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Abstract—We introduce a novel approach to shape from defocus, i.e., the problem of inferring the three-dimensional (3D) geometry of

a scene from a collection of defocused images. Typically, in shape from defocus, the task of extracting geometry also requires

deblurring the given images. A common approach to bypass this task relies on approximating the scene locally by a plane parallel to

the image (the so-called equifocal assumption). We show that this approximation is indeed not necessary, as one can estimate

3D geometry while avoiding deblurring without strong assumptions on the scene. Solving the problem of shape from defocus requires

modeling how light interacts with the optics before reaching the imaging surface. This interaction is described by the so-called point

spread function (PSF). When the form of the PSF is known, we propose an optimal method to infer 3D geometry from defocused

images that involves computing orthogonal operators which are regularized via functional singular value decomposition. When the

form of the PSF is unknown, we propose a simple and efficient method that first learns a set of projection operators from blurred

images and then uses these operators to estimate the 3D geometry of the scene from novel blurred images. Our experiments on both

real and synthetic images show that the performance of the algorithm is relatively insensitive to the form of the PSF. Our general

approach is to minimize the Euclidean norm of the difference between the estimated images and the observed images. The method is

geometric in that we reduce the minimization to performing projections onto linear subspaces, by using inner product structures on

both infinite and finite-dimensional Hilbert spaces. Both proposed algorithms involve only simple matrix-vector multiplications which

can be implemented in real-time.

Index Terms—Shape from defocus, depth from defocus, blind deconvolution, image processing, deblurring, shape, 3D reconstruction,

shape estimation, image restoration, learning subspaces.
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1 INTRODUCTION

WE are interested in reconstructing the three-dimen-
sional (3D) geometry of a scene from a collection of

images. In computer vision such a task is called shape-from-
X, where X denotes the cue used to infer shape. For
example, one can capture images from different vantage
points as in stereo and motion [18], [8], [4]. In this paper,
instead, we consider images that are captured with different
optical settings of the imaging device, which leads to the
problem of shape from defocus.

In shape from defocus one can, for instance, take
photographs of a scene while changing the relative position
of the lens with respect to the CCD sensor. Notice that,
when bringing a certain object into focus, objects that are
away from it appear blurred and the amount of blur
increases with the relative distance (see Fig. 1). This
suggests that defocus and geometry are related and,
therefore, it may be possible to estimate the geometry of a
scene by measuring the amount of defocus in an image.
However, one defocused image is not sufficient to obtain a
unique reconstruction of the scene unless additional
information is available. For example, one cannot distin-
guish between the sharp image of an object with blurred
texture and the blurred image of an object with sharp
texture. To cope with this ambiguity, one can analyze two

or more defocused images obtained with different focus
settings, as shown in Fig. 1.

2 RELATION TO PREVIOUS WORK

The general problem of shape from defocus has been
addressed in a variety of contexts: Earlier approaches
adopted Markov random fields to model both shape and
appearance [6], [29], [30]. This approach has been shown to
be effective for surface reconstruction from defocused
images, but at the price of a high computational cost.
Among deterministic approaches, we distinguish between
those that maintain a spatial representation of the imaging
model [7], [9], [10], [12], [21], [24], [25], [26], [27], [33], [37]
and those that operate in the frequency domain [2], [15],
[28], [31], [39]. In particular, most of the latter approaches
are appealing since they allow one to formally eliminate
undesired unknowns (the appearance, or “radiance”).
However, the assumptions required in order to do so
introduce artifacts in the solution due, for example, to noise
and windowing [7], [20].

Another way to classify approaches to shape from
defocus is based on simplifications of the image formation
model. For example, some assume that the scene contains
“sharp edges,” i.e., discontinuities in the scene radiance [1],
[19], [25], [34], [32], others that the radiance can be locally
approximated by cubic polynomials [35], or that it can be
controlled by using structured light [14], [22], [24]. A more
common simplification of the image formation model is the
so-called equifocal assumption, which consists of assuming
that the surface of the scene can be locally approximated by
a plane parallel to the image plane [19], [35], [25], [36], [38],
[41]. One advantage of such an assumption is that it allows
one to avoid reconstructing the appearance of the scene
while recovering its geometry. However, it also fails to
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properly capture a large class of surfaces (nonequifocal
surfaces) and does not allow enforcing global regularity on
the estimate. Approaches that do not make this assumption
yield accurate estimates of geometry, but are computation-
ally challenging because they require estimating the
radiance of the scene along with geometry [6], [40].

We propose a novel approach that is not based on the
above assumptions. We show that it is not necessary to
simplify the imaging model to avoid estimating the
appearance of the scene while recovering its geometry
(Section 4.2). Based on this result, we propose two methods:
one that can be used when an explicit characterization of the
camera is available (Section 5.1) and one when it is not
available (Section 5.2). Furthermore, the implementation of
both methods does not require an explicit discretization or
choice of basis as has been done in one way or another in
most of the algorithms in the literature. In our approach, the
size of the measurement array naturally imposes regularity
in the solution, which is obtained in infinite-dimensional
space using a functional SVD (singular value decomposi-
tion). We exploit the geometry of Hilbert spaces, which
makes the analysis simple and intuitive.

For simplicity, in our current implementation, we restrict
our attention to the simplest class of shapes, namely, local
equifocal planes. However, we would like to stress the fact
that the general algorithms we propose are not restricted to
any specific model class: One could choose a class of slanted
planes or curved surfaces, or avoid choosing classes
altogether, by implementing a variational minimization, as
suggested in Section 6. In this paper we are only interested
in the simplest implementation of the proposed algorithms,
for the purpose of showing the effectiveness of our
approach. Our implementation only requires a finite set of
matrix-vector computations (of the size of the set of the
precomputed orthogonal operators) which can be per-
formed independently at each pixel, allowing for a high
level of parallelism. Our current experimental evaluation
shows that these implementations have potential for real-
time performance on current personal computers.

3 PROBLEM STATEMENT

In this section we introduce the problem of shape from
defocus and the notation we will use later on. In particular,
we will briefly introduce the image formation model for

defocused images and outline the assumptions we make in
deriving it.

A rigorous image formation model would require us to
consider light interactions based on Maxwell’s equations
[5]. A simpler way of proceeding is, instead, to resort to
notions of optical geometry (see, for example, [13]). We shall
be content with a reasonable approximation of light
interaction based on assuming that the surface is Lamber-
tian,1 that there are no occlusions or self-occlusions (see [3],
[11] for these cases), that we are in a vacuum (see [23] when
this hypothesis is removed), and that optics and surfaces
are not dependent on light wavelength. These hypotheses
allow us to describe the geometry of the scene with a
function s : IR2 7!½0;1Þ that we call surface and the appear-
ance of the scene with a function r : IR2 7!½0;1Þ that we call
radiance with an abuse of terminology.2 The function smaps
points x 2 IR2 on the lens plane to the distance of the
surface of the scene from the lens.

We model the image plane as a finite-dimensional lattice
(the CCD grid) � ¼ IRM � IRN , with coordinates y 2 �. A
defocused image is a function I : �7!½0;1Þ thatmapspointsy
on the image plane to intensity values. Since we capture
multiple images by changing the optics settings, we denote
each image with Ii, where i ¼ 1; . . . ; K and K is the number
of captured images.

Given the assumptions above, a defocused image Ii can
be expressed as the result of a linear operator hsi :
IR2 � �7!½0;1Þ that depends upon the optics of the camera
as well as the three-dimensional shape of the scene, acting
on the radiance r [25], [6]:

IiðyÞ ¼
Z
hsi ðx;yÞrðxÞdx: ð1Þ
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Fig. 1. Three images of the same scene taken with different camera settings. (a) The apple is brought into focus. (b) The grapefruit is brought into

focus. (c) The background is brought into focus. When the background is brought into focus, both the grapefruit and the apple are defocused. In

addition, the apple is more blurred than the grapefruit since it is farther from the background than the grapefruit.

1. A less stringent assumption is indeed sufficient to our purposes, as
pointed out by an anonymous reviewer. We only require that all the points
on the lens receive the same amount of energy from the same point-source
on the scene. In typical situations, the dimension of the lens is relatively
small in comparison to the distance of the scene from the camera. This
means that we assume that the reflectance of the scene does not change
within a small angle of viewing directions. In practice, this assumption is
always satisfied if the scene is not made of highly specular surfaces.

2. In the context of radiometry, the term radiance refers to a more complex
object that describes energy emitted along a certain direction, per solid
angle, per foreshortened area and per unit time [13]. However, in our case,
there is no dependency on direction and the change in the solid angle is
negligible. Hence, a function of the position on the surface of the scene
suffices to describe the variability of the radiance.



The operator hsi is called the point spread function (PSF).
We are interested in inverting (1) by finding a radiance r

and a surface s that verify the equation when Ii is measured
on a CCD sensor. This problem is well-known to be ill-
posed and, therefore, we will look for solutions that
minimize a suitable optimization criterion, for instance, a
regularized norm k � k:

ŝs; r̂r _¼¼ arg min
s;r

XK
i¼1

knik subject to ð2Þ

IiðyÞ ¼
Z
hsi ðx;yÞrðxÞdxþ niðyÞ 8 y 2 � i ¼ 1; . . . ; K:

ð3Þ

4 A LEAST-SQUARES SOLUTION

In this section, we introduce the core of our algorithm. We

work in function space and use the geometry of operators
between Hilbert spaces. For basic results on operators
between finite and infinite-dimensional Hilbert spaces, see,
for instance, [17].

4.1 Notation and Formalization of the Problem

For ease of notation we rearrange an image I in a column

vector of dimension MN . Also, we collect a number K of

images for different optics settings and organize them in

a column vector by stacking each image on top of each

other so that I ¼ ½I1; I2; . . . ; IK � 2 IRP , where P ¼MNK.

If we do the same for the corresponding kernels

hs ¼ ½hs1; hs2; . . . ; hsK �, then the equations (1) can be

rewritten more compactly as:

IðyÞ ¼
Z

hsðx;yÞrðxÞdx: ð4Þ

We now want to write the above equation in a more concise

form. To this end, consider the Hilbert space L2ðIR2Þ with

the inner product h�; �i : L2ðIR2Þ � L2ðIR2Þ7!IR defined by:

ðf; gÞ7!hf; gi _¼¼
Z
fðxÞgðxÞdx: ð5Þ

Since images are defined on a lattice � of sizeM �N pixels,

it is also useful to recall the finite-dimensional Hilbert space

IRP of vectors with inner product hh�; �ii : IRP � IRP 7!½0;1Þ
defined as:

ðV ;W Þ7!hhV ;Wii _¼¼
XP
i¼1

ViWi: ð6Þ

We define the linear operator Hs : L
2ðIR2Þ7!IRP such that

Hsr _¼¼ hhsð�;yÞ; ri. Using this notation, we can rewrite our

imaging model as

IðyÞ ¼ ðHsrÞðyÞ ð7Þ

and impose that r belongs to the Hilbert space L2ðIR2Þ. The
problem (2)-(3) can then be stated as

ŝs; r̂r ¼ argmin
s;r

kI�Hsrk2; ð8Þ

where thenormk � k is naturally inducedby the innerproduct

relative to the same Hilbert space, i.e., kV k2 ¼ hhV ; V ii.

4.2 Adjoints and Orthogonal Operators

By assuming Hs to be a linear bounded operator,3 there

exists a unique adjoint H�
s : IRP 7!L2ðIR2Þ, mapping

I 7!H�
s I _¼¼ hhhsðx; �Þ; Iii such that

hhHsr; Iii ¼ hr;H�
s Ii ð9Þ

for any r 2 L2ðIR2Þ and I 2 IRP . The (Moore-Penrose)

pseudoinverse Hy
s : IR

P 7!L2ðIR2Þ is defined as the operator

such that r̂r ¼ Hy
sI satisfies the equation

H�
s ðHsr̂rÞ ¼ H�

s I: ð10Þ

The orthogonal projection operator H?
s : IRP 7!IRP is de-

fined such that

I7!H?
s I _¼¼ I�HsH

y
sI; ð11Þ

where Hy
s is the pseudoinverse. Note that the orthogonal

projection operator is finite-dimensional and, therefore,
represented by a matrix. A summary of all the operators
introduced so far with their domain, codomain, and
functionality is shown in Table 1.

The next proposition introduces the main result of this
paper. We show that, when solving shape from defocus, it is
possible to avoid reconstructing the radiance without
introducing restrictions on the point spread function hs

(e.g., by imposing shift-invariance).

Proposition. Let ŝs; r̂r be local extrema of the functional

�ðs; rÞ _¼¼ kI�Hsrk2 ð12Þ

and let ~ss be a local extremum of the function

 ðsÞ _¼¼ kH?
s Ik

2: ð13Þ

Furthermore, let ~rr be obtained from ~ss by ~rr _¼¼ �ð~ssÞ, where � is

defined as
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TABLE 1
Summary of the Operators Introduced in Sections 4.1 and 4.2 with Their Respective Domain, Codomain, and Functionality

3. Note that this assumption imposes constraints on the scene/optics
combination. Alternatively, it can be thought of as a regularizing condition.



�ðsÞ _¼¼ Hy
sI: ð14Þ

Then, ŝs is also a local extremum of  ðsÞ and ~ss; ~rr are also local

extrema of �ðs; rÞ.
Proof. The proof extends the results of Golub and Pereyra

[16]. For more details, see the Appendix. tu
Remark 1. The significance of the proposition above is that

(12) and (13) have the same minima in the 3D structure of

the surface s, but, while (12) is an optimization problem

in two unknowns, (13) is an optimization problem in a

single unknown, s. Furthermore, if we constrain the

surface s to belong to a finite-dimensional set, while the

problem in (12) is still infinite-dimensional, the problem

in (13) becomes finite-dimensional. Indeed, in the

implementations we consider in the experimental section

it is a one-dimensional space (depth). Note also that the

proposition is nontrivial: In fact, (13) is obtained by

multiplying on the left (7) by the (singular) matrix H?
s .

This can add spurious solutions to the problem, as we

know by solving linear systems of equations.4 The

proposition shows that, in this specific case, this does

not happen.

Notice that, if Hŝs is surjective5 for a given ŝs, the

orthogonal operator H?
ŝs is the null map (see (11)). In this

case, (13) is trivially satisfied for any measured image I and,

therefore, ŝs is always a minimizer. Hence, a necessary

condition to avoid this scenario is to impose that Hŝs maps

functions in L2ðIR2Þ to a subspace of IRP of dimension less

than P . In the next section, we will do so by truncating the

singular value decomposition of either the operator Hs or

the operator H?
s .

As we have seen in the proposition, rather than solving

the original problem in (12), we can solve the simpler

problem in (13). Then, the minimization of (12) boils down

to computing the orthogonal operators H?
s . As we show in

the next section, H?
s can be computed in different ways.

5 COMPUTATION OF THE ORTHOGONAL

OPERATORS

When the complete characterization of the PSF of the

camera is known, one can directly compute the orthogonal

operators H?
s in closed form, at least for simple classes of

PSFs (Section 5.1). More in general, one can express Hs via

the functional singular value decomposition [2]. When the PSF

is not known, one can compute H?
s directly from blurred

images, as we explain in Subsection 5.2. The advantage of

this second solution is its simplicity: To compute H?
s , one

only needs to collect a training set of controlled blurred

images and then express the training set via the singular

value decomposition.

5.1 Regularization via Functional Singular Value
Decomposition

Assuming that we have a model of the PSF, we can express

the operator Hs using its functional singular value decom-

position. Let f�kg, k ¼ 1; . . . ; P , be a sequence of nonnega-

tive scalars sorted in decreasing order, fvkg an orthonormal

set of vectors in IRP , and fukg an orthonormal set of

functions in L2ðIR2Þ. We now look for the particular choice

of such sets that allows us to express Hs as

Hs ¼
XP
k¼1

�kukvk; ð15Þ

where Hs maps L2ðIR2Þ on IRP as follows:

r7!Hsr _¼¼
XP
k¼1

�khr; ukivk: ð16Þ

Using the same sequences of uk and vk, we can obtain an

expression for the adjointH�
s ; in particular,H�

s I is defined via

H�
s I _¼¼

XP
k¼1

�khhI; vkiiuk: ð17Þ

If there exists a suitable integer � (the rank of the operator)

such that �k > 0 for 1 � k � � and �k ¼ 0 for � < k � P , it is

easy to verify by substitution that the pseudoinverse is

given by6

Hy
s ¼

X�
k¼1

��1
k ukv

t
k: ð18Þ

Then, the orthogonal projection operator is

H?
s ¼ 1P �

X�
k¼1

vkv
t
k; ð19Þ

where 1P is the P � P identity matrix. In order for the

orthogonal projection operator to be nontrivial, we need to

assume that � < P . This is equivalent to assuming that Hs

maps to a finite-dimensional subspace of L2ðIR2Þ, which

imposes a lower bound on the dimensionality of the data to

be acquired, i.e., the minimum number of blurred images

and their size.
The sequences f�kg, fukg, and fvkg are found by solving

the normal equations:

H�
sHsuk ¼ �2kuk

HsH
�
s vk ¼ �2kvk

8<
: k ¼ 1 . . . � ð20Þ

or, making the notation explicit,

P
y h

sð~xx;yÞ
Z

hsðx;yÞukðxÞdx
� �

¼ �2kukð~xxÞZ
hsðx; ~yyÞ

P
y h

sðx;yÞvkðyÞ
� �

dx ¼ �2kvkð~yyÞ

8>><
>>:

k ¼ 1 . . . �:

ð21Þ

The second of the normal equations (21) can be written as
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4. For instance, the solution of Ax ¼ 0 is fx 2 NullðAÞg, while the
solution to BAx ¼ 0 is fx 2 NullðaÞg [ fx j Ax 2 NullðBÞg.

5. Recall that a function is surjective when its range is the whole
codomain. In our case, Hŝs is subjective when for each image I 2 IRP there
exists a radiance r such that Hŝsr ¼ I. 6. The symbol ð�Þt denotes matrix transposition.



Mvk ¼ �2kvk k ¼ 1 . . . �; ð22Þ

where M is the P -dimensional symmetric matrix
hhsð�; ~yyÞ;hsð�;yÞi. Since this is a (finite-dimensional) sym-
metric eigenvalue problem, there exists a unique decom-
position of M of the form

M ¼ V�2V t; ð23Þ

with V tV ¼ 1�, �
2 ¼ diagf�21 . . .�2�g, and V ¼ ½v1; . . . ; v��.

We are now left with the first equation in (21) in order to
retrieve ukðxÞ. However, instead of solving that directly, we
use the adjoint operatorH�

s tomap thebasis of IRP onto abasis
of a �-dimensional subspace of L2ðIR2Þ via H�

s vk ¼ �kuk.
Making the notation explicit, we have

ukðxÞ ¼ ��1
k

X
y

hsðx;yÞvkðyÞ k ¼ 1 . . . �: ð24Þ

Remark 2 (Regularization). In the computation of H?
s

(which we will see more in detail in Section 7), the sum is
effectively truncated at k ¼ � < P , where the dimensionP
depends upon the amount of data acquired. As a
consequence of the properties of the SVD, the solution
obtained enjoys a number of regularity properties. Note
that the solution is not the one that we would have
obtained by first writing r using a truncated orthonormal
expansion in L2ðIR2Þ, then expanding the kernel hs in (7)
in series, and then applying the finite-dimensional
version of the orthogonal projection theorem.

5.2 Learning Null Spaces from Defocus

When themodel of thePSFhs is not known,we cannot use the
method described in the previous section to compute the
orthogonal operators. Here, we show that complete knowl-
edge of the point spread function is indeed not necessary. To
compute the orthogonal operators, one only needs the finite-
dimensional range of the PSF, which can also be obtained
directly from a collection of blurred images.

Recall that a defocused image I can be written as H�ssr for
some surface �ss and a radiance r (see (7)). By definition, if we
multiply the orthogonal operator H?

�ss by I on the right, we
obtain

H?
�ss I ¼ H?

�ss H�ssr ¼ 0: ð25Þ

Notice that this equation is satisfied for any radiance r.
Hence, if we collect a set of T images7 fIgi¼1...T by letting the
radiance vary r ¼ fr1; . . . ; rTg, we obtain

H?
�ss ½I1 . . . IT � ¼ H?

�ss H�ss½r1 . . . rT � ¼ ½0 . . . 0� _¼¼ 0 ð26Þ

as long as the surface �ss of the scene remains the same. We
can therefore find H?

�ss by simply solving the following
system of linear equations:

H?
�ss ½I1 I2 . . . IT � ¼ 0: ð27Þ

Notice, however, that H?
�ss is not a generic matrix but, rather,

has some important structure that must be exploited in
solving the system of equations above. In particular, H?

s is a

symmetric matrix (i.e., H?
s ¼ ðH?

s Þ
t) which is also idempotent

(i.e., H?
s ¼ ðH?

s Þ
2). According to the first property we can

write H?
s as the product of a matrix A of dimensions m� n,

m � n, with its transpose; as for the second property, we
have that the columns of A must be orthonormal and, thus,
H?
s can be written uniquely as:

H?
s ¼ AAt; ð28Þ

where A 2 Vn;m and Vn;m is the space of n�m rectangular
matrices with orthonormal columns.

Let I ¼ ½I1 I2 . . . IT � 2 IRP�T , then the solution of (27)
can be obtained via the singular value decomposition of I

I ¼ UBWt; ð29Þ

where U 2 VP;P , W 2 VT;T , and B 2 IRP�T is a diagonal
matrix whose values are nonnegative, by defining

H?
�ss ¼ U2U

t
2; ð30Þ

where U ¼ ½U1 U2� and U2 are the orthonormal vectors
corresponding to the null singular values of B. In other
words, given a surface �ss of the scene, we can learn the
corresponding orthogonal operatorH?

�ss by applying the SVD
to a matrix whose column vectors are defocused images.

In the presence of deviations from the ideal model (1),
this yields the least-squares estimate of H?

�ss , which can be
thought of as a learning procedure, summarized in Table 2.

Remark 3 (Excitation). The computation of the orthogonal
operatorH?

s depends strongly on the training sequence of
defocused images that we use (see 27)). In order to be able
to learn a nontrivial orthogonal operator, we expect the
training set to span a subspace of dimension less than P .
However, there are two factors that determine the rank of
the training set: One is the intrinsic structure of the PSF,
which iswhatwewant to characterize, the other is the rank
of the chosen set of radiances r1; . . . ; rT . For example, if we
employ radiances (or “scene textures”) that are linearly
dependent and span a subspace of dimension � < P , the
corresponding defocused images are also linearly depen-
dent (due to the linear relation between radiances and
defocused images) and span a subspace of dimension less
than or equal to � (some radiances may be mapped to the
same blurred image). If the rank due to the intrinsic
structure of the PSF is larger than �, by using these images
we do not reconstruct the correctH?

s .
To determine the correct structure of H?

s , we need to
guarantee that only the first factor is lowering the rank.
In order to do that, we need to choose a set or radiances
that is large enough, i.e., T � P , spans a subspace of
dimension larger than or equal to P , and does not belong
to the null space of Hs. We call such radiances sufficiently
exciting for the training sequence.

6 SHAPE ESTIMATION ALGORITHM

So far, we have shown that the original problem in (12) can
be reduced to the problem in (13), which involves the
computation of orthogonal projectors H?

s (Section 4.2).
Then, we have shown two methods to compute the
projectors (Section 5.1 and Section 5.2). Now that we have
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7. Recall that each image Ii 2 IRP , P ¼M �N �K, and Ii is a column
vector collecting K defocused images ½I1; . . . ; IK �, Ij 2 IRM�N 8j ¼ 1; . . . ; K,
captured for K different optics settings. As we will discuss in Section 7.2,
½I1; . . . ; IT � will be small image patches carved out of one single image.



derived all the necessary components, we will introduce
our algorithm to reconstruct the geometry of a scene from
defocused images.

Given a collection of K defocused images
I ¼ ½I1; I2; . . . ; IK �, we want to estimate the 3D structure of
the scene by minimizing the following cost functional:

~ss ¼ argmin
s

kH?
s Ik

2: ð32Þ

If one is also interested in reconstructing the radiance (i.e.,
deblurring the defocused images I), the solution ~ss of (32)
can be used to compute:

~rr ¼ Hy
~ssI: ð33Þ

In principle, the above minimization can be carried out by
using the tools of calculus of variations. One can estimate ~ss
by implementing the following gradient descent flow:

@s

@�
¼ �rsE; ð33Þ

where � is the iteration index, EðsÞ ¼ kH?
s Ik

2 is the cost
functional, and rsE is the functional gradient of E with
respect to the surface s.

In this paper, however, we are interested only in the
simplest implementation. Hence, rather than implementing
computationally expensive gradient flows, we solve (32)
locally around patches of the defocused images and, for
each patch, we assume that the corresponding surface
belongs to a finite dimensional set of admissible surfaces S.
In particular, in the simplest case, we assume that the scene
that generates a local patch can be approximated with a
small planar patch parallel to the image plane. In other
words, we solve

~ssðxÞ ¼ argmin
s2S

kH?
s IðyÞk

2 8 y 2 W; ð35Þ

where W is a patch centered in x and S is a discrete set of

depths. This simplification allows us to precompute the

orthogonal projectors H?
s , one for each depth level, and to

minimize the cost functional by a simple one-dimensional

exhaustive search.
This algorithm enjoys a number of properties that make

it suitable for real-time implementation. First, the only
operations involved are matrix-vector multiplications,
which can be easily implemented in hardware. Second,
the process is carried out at each pixel independently, thus
enabling highly parallel implementations. It would be
possible, for example, to have CCD arrays where each pixel
neighborhood maps to a computing unit returning the
depth relative to it.

Also, one could compensate for the coarseness of
choosing a finite set of depth levels by interpolating the
computed cost function. The search process can be
accelerated by using well-known descent methods (i.e.,
gradient descent, Newton-Raphson, tangents, etc.) or by
using a dichotomic search.

Notice that, despite its simplicity, the proposed algo-
rithm is very general and the choice of working locally at
patches is not crucial to the feasibility of the algorithm.

7 EXPERIMENTS

In this section, we present a set of experiments both on
synthetic data (unaffected by noise) and on real images
(affected by sensor noise). We have verified experimentally
that the performance of the proposed algorithms in the case
of a Gaussian or a “Pillbox” point spread function is very
similar. Hence, for simplicity, when computing the ortho-
gonal operators, we consider only the Gaussian family. This
is not a crucial choice, however, since the algorithm can be
carried out for any other family of PSFs at the cost of an
increased computational burden.

6 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 27, NO. 3, MARCH 2005

TABLE 2
Summary of the Procedure to “Learn” the Orthogonal Operator H?

s for Defocused Images



For a general description and characterization of the
Gaussian and Pillbox families, we refer the reader to the
book by Chaudhuri and Rajagopalan [6]. Here, we only
want to address the specific issue of modeling the pixel

discretization effect of the CCD. We approximate this effect
by integrating the energy hitting the surface of a pixel with
a Gaussian kernel, i.e.,

~IIðyÞ ¼
Z

1

2��2
e�

ky�~yyk2

2�2

Z
hsðx; ~yyÞrðxÞdx

� �
d~yy; ð36Þ

where � ¼ 1=4 pixels. By taking the discretization into
account, we obtain a point spread function that is never a
Dirac delta, but a regular smooth function, even when the
scene is brought into focus.

In all the experiments, we compute orthogonal operators

locally on windows of 7� 7 or 9� 9 pixels. Since we always

collect two defocused images only, while changing the focus

settings, the orthogonal operators are matrices of size 2 � 72 �
2 � 72 ¼ 98� 98 pixels or 2 � 92 � 2 � 92 ¼ 162� 162 pixels. As

we will see, a qualitative comparison of the reconstruction of

shape fromreal imagesdoesnot reveal anoticeabledifference

among the orthogonal operators computed via themethod in

Section 7.1 or the method in Section 5.2. In other words, we

can “learn” the orthogonal projector H?
s corresponding to

“virtual” or synthetic cameras and then use it in Algorithm 2

to infer the shape of scenes captured with real cameras. The

results are comparable to those obtained by inferring the

orthogonal projector through a careful calibration procedure,

as we have described in Section 7.1. This speaks of the

remarkable flexibility of such a simple algorithm for shape

from defocus.
For a better evaluation of the performance of this

algorithm, we are in the process of making its implementa-
tion in Matlab code available online on our Web page
http://www.cs.ucla.edu/~favaro.

7.1 Experiments with Known PSF

Following the procedure presented in Section 5.1, we
compute a set of orthogonal operators H?

s in the case of a
Gaussian kernel for patches of 7� 7 pixels. We simulate a
scene made of 51 equifocal planes placed equidistantly in
the range between 520mm and 850mm in front of a camera
with a 35mm lens and F-number 4. We capture two
defocused images. One is obtained by bringing the plane
at 520mm into focus. The other is obtained by bringing the
plane at 850mm into focus. Each of the 51 equifocal planes
corresponds to one orthogonal operator. We would like to
stress that the orthogonal operators do not need to be
computed for equifocal planes, but can be computed for any
other set of surfaces (Section 6).

Once the orthogonal projectors are computed, we apply
them on both synthetically generated and real images. In
the synthetic case, we simulate 50 defocused images for
each of the 51 equifocal planes used to generate the
orthogonal operators. Each of the 50 simulations is obtained
by employing a radiance of the scene that is generated
randomly. At each depth level, and for each of these
experiments, we estimate a depth level. Fig. 2 shows the
depth estimation performance when we use the computed
orthogonal operators with ranks 40, 55, 65, 70, 75, and 95.
Both mean and standard deviation (in the graphs we show
three times the computed standard deviation) of the
estimated depth (solid line) are plotted over the ideal
characteristic curve (the diagonal dotted line). Clearly,
when the chosen rank does not correspond to the true rank
of the operators, the performance rapidly degenerates. In
this case, the correct rank is 70. For this choice, the average
estimation error8 is 31mm. We also test the performance of
this algorithm on the real images shown in Fig. 3 and Fig. 6
by working on patches of 9� 9 pixels. In Fig. 3, the scene is
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Fig. 2. Performance test for different ranks of the orthogonal operators computed in closed form in the case of a Gaussian PSF. From left to right and

from top to bottom, the ranks are 40, 55, 65, 70, 75, and 95. Both mean and standard deviation (in the graphs, we show three times the computed

standard deviation) of the estimated depth (solid line) are plotted over the ideal characteristic curve (dotted line) for 50 experiments.

8. We compute the average estimation error as the mean of the absolute
value of the difference between the estimated depth of the scene and the
ground truth.



composed of objects placed between 640mm and 750mm in
front of the lens. From the bottom to the top, we have: a box,
a slanted plane, and two cylinders. We capture images
using an 8-bit camera containing two independently
moving CCDs (kindly provided to us by Professor S.K.
Nayar of Columbia University). The lens is a 35mm Nikon
NIKKOR with F-number 4. In Fig. 4, we show the estimated
depth map as a gray-level image, where light intensities
correspond to points that are close to the cameras and dark
intensities to points that are far from the cameras. In Fig. 5,
we show the estimation results as texture mapped surfaces,
after smoothing.

For comparison, we can test the same data (Fig. 6) on an
algorithm using the rational filter approach described in
[36]. In Fig. 7, we show the estimated depth map in the case
of the simple least-squares algorithm (a) with the depth
map estimated with the more elaborate algorithm of [36]
(b). The quality of the estimates is very similar.

7.2 Experiments with Unknown PSF

In this section, we evaluate the performance of the proposed
depth estimation algorithm when the orthogonal operators
are computed via the procedure described in Section 5.2. As
in the previous section, we perform experiments on both

real and synthetic data. We use operators computed from
synthetic data on both real and synthetic imagery and
operators computed from real data on real imagery
obtained from the same camera. We divide the range
between 520mm and 850mm in front of the camera into
51 intervals and compute 51 orthogonal projectors each
corresponding to a plane parallel to the image plane placed
at one of the intervals. Each operator is computed by
capturing only two defocused images of 640� 480 pixels.
We collect 200 patches of 7� 7 pixels or 9� 9 pixels from
these images and use them to estimate the orthogonal
operator. We test that the radiances collected from each
patch are sufficiently exciting (see Remark 3) by making sure
they are not linearly dependent. The whole procedure can
be easily performed both on synthetic and real data.

Experiments on Synthetic Data. We simulate the same
scene and camera settings as in the previous section. Fig. 8
shows the depth estimation performance when we use the
orthogonal operators learned from synthetic data, with
ranks 40, 55, 65, 70, 75, and 95 on synthetic images. Both
mean and standard deviation (in the graphs, we show three
times the computed standard deviation) of the estimated
depth (solid line) are plotted over the ideal characteristic
curve (the diagonal dotted line). Clearly, when the chosen
rank does not correspond to the correct rank of the
operators, the performance degrades rapidly. In this case,
the correct rank is again 70. For this choice, the average
estimation error is 27mm.

Experiments on Real Data. We perform three experi-
ments with real data. In two experiments, we use operators
learned from synthetic images, by assuming the PSF to be
Gaussian. The operators are computed as described in the
previous section, applied to the pair of real images shown in
Fig. 3, and return the depth map estimate in Fig. 9. As one
can observe, the estimated depth map is very similar to the
estimate obtained when the operators are computed in
closed form, as prescribed in Section 5.1 (compare to Fig. 4).
We also apply these operators (learned from synthetic
images) to the pair of real images shown in Fig. 6, so as to
compare the estimated depth map to the one obtained by a
more elaborate algorithm [36]. The estimated depth map
and the one computed by [36] are shown in Fig. 10. In the
third experiment, we learn the orthogonal projection
operators from a collection of real images and then apply
these operators to novel real images obtained from the same
camera. We test these operators on the images in Fig. 3 and
obtain the depth map shown in Fig. 11. As one can see, the
estimated depth map is very similar to the estimates
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Fig. 4. Estimated depth of the real images in Fig. 3 when using the
Gaussian PSF and the closed form solution for the orthogonal operators.
(a) The estimated depth in gray-level intensities, where light corre-
sponds to small depths, and dark to large depths. (b) Visualization of the
estimated depth as a mesh.

Fig. 5. Novel views of the estimated shape (after smoothing) and with

texture mapping. Shape has been reconstructed with orthogonal

operators computed in closed form in the case of a Gaussian PSF.

Fig. 3. (a) Setup of the real scene. From the bottom to the top we have: a

box (parallel to the image plane), a slanted plane, and two cylinders.

(b) Two images captured with different focal settings.



obtained in the previous experiments.

8 CONCLUSIONS

We have presented a novel and optimal (in the L2 sense)

technique to infer 3Dshape fromdefocus.Rather thansolving

theproblemofmatchingdata tomeasurements, ourapproach

consists of solvinganequivalent but simplerproblemwherea

set of interest operators are applied to the given blurred

images. The solution is then obtained by searching for the

operator whose output has the lowest energy.
We propose two approaches to compute the interest

operators. In one approach, we describe a regularized

closed form solution via the functional SVD of the imaging

kernels. In the other, we avoid modeling the optics and

construct the operators by learning the left null space of

blurred images through singular value decomposition. This

second method is so flexible that we can learn a character-

ization of the imaging kernel even from synthetic images

and then use it on images obtained from a real camera.
In our approach, the size of the measurement array

naturally imposes regularity in the solution, which is

obtained in infinite-dimensional space using a functional

singular value decomposition. We use the structure of maps

between (finite and infinite-dimensional) Hilbert spaces,

which makes the analysis simple and intuitive.

Fig. 8. Performance test for different ranks of the orthogonal operators learned from synthetic data in the case of a Gaussian PSF. From left to right

and top to bottom, the ranks are 40, 55, 65, 70, 75, and 95. Both mean and standard deviation (in the graphs, we show three times the computed

standard deviation) of the estimated depth (solid line) are plotted over the ideal characteristic curve (dotted line) for 50 experiments.

Fig. 7. Estimated depth maps from the two input images in Fig. 6. Both depth maps are not postprocessed. On the left, we show the depth map

estimated with the simple algorithm described in this manuscript with known PSF. On the right, we show the depth map estimated with the algorithm

described in [36].

Fig. 6. Two real images captured with different focus settings. For more details on the scene and camera settings, please refer to [36].



The algorithms are robust to noise and can be used

effectively to estimate depth, as we showed in the

experiments. Furthermore, the proposed algorithms can

be implemented in real time and are suitable for highly

parallel computational schemes.

APPENDIX

The proof of the proposition in Section 4.2 closely relates to

the results of Golub and Pereyra [16]. Before proceeding

with the proof, we need to introduce some additional

notation. The extrema of the functional � and  are defined

via their Fréchet functional derivatives. They result in the

following coupled equations:

rs�ðŝs; r̂rÞ ¼ 0
rr�ðŝs; r̂rÞ ¼ 0

�
ð37Þ

and

rs ð~ssÞ ¼ 0
r _¼¼ �ð~ssÞ;

�
ð38Þ

wherers� andrr� stand for the gradients of �with respect

to s and r, respectively, andrs stands for the gradient of  

with respect to s [17]. For simplicity, where possible, we

indicate with _AA the derivative of A with respect to s instead

of using the equivalent but bulkier notation rsA.
For ease of reading, we simplify the proof of the

proposition by gathering some of the results in the

following lemma:

Lemma 1. Let PHs
_¼¼ HsH

y
s be the projection operator onto the

range of Hs and recall that Hy
s verifies HsH

y
sHs ¼ Hs and

ðHsH
y
sÞ

� ¼ HsH
y
s , then

_PPHs
¼ H?

s
_HHsH

y
s þ H?

s
_HHsH

y
s

� ��
: ð39Þ

Proof. Since PHs
Hs ¼ Hs, then:

rsðPHs
HsÞ ¼ _PPHs

Hs þ PHs
_HHs ¼ _HHs ð40Þ

and

_PPHs
Hs ¼ _HHs � PHs

_HHs ¼ H?
s

_HHs: ð41Þ

Also,

_PPHs
PHs

¼ _PPHs
HsH

y
s ¼ H?

s
_HHsH

y
s : ð42Þ

Since _PPHs
PHs

� ��¼ PHs
_PPHs

, then

_PPHs
¼ rsðPHs

PHs
Þ ¼ _PPHs

PHs
þ PHs

_PPHs

¼ H?
s

_HHsH
y
s þ H?

s
_HHsH

y
s

� ��
;

ð43Þ

which completes the proof. tu
We now use the results of Lemma 1, together with the fact

that _HH?
s ¼ � _PPHs

, to prove the proposition:

Proof of the Proposition. We have that

1

2
rs�ðŝs; r̂rÞ ¼ Hŝsr̂rð ÞT _HHŝsr̂r� IT _HHŝsr̂r ¼ 0; ð44Þ

while

10 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 27, NO. 3, MARCH 2005

Fig. 10. Estimated depth maps from the two input images in Fig. 6. Both depth maps are not postprocessed. On the left, we show the

depth map estimated with the simple least-squares algorithm with unknown PSF. On the right, we show the depth map estimated with the

algorithm described in [36].

Fig. 11. Estimated depth for the scene in Fig. 3 when using the

orthogonal operators learned from real images. (a) The estimated depth

in gray-level intensities, where light corresponds to small depths and

dark to large depths. (b) Visualization of the estimated depth as a mesh.

Fig. 9. Estimated depth of the scene shown in Fig. 3 when using the
Gaussian PSF and the learning method for the orthogonal operators on
synthetic images. (a) The estimated depth in gray-level intensities,
where light corresponds to small depths and dark to large depths.
(b) Visualization of the estimated depth as a mesh.



1

2
rr�ðŝs; r̂rÞ ¼ H�

ŝsHŝsr̂r�H�
ŝs I ¼ 0 ð45Þ

leads to

H�
ŝsHŝsr̂r ¼ H�

ŝs I: ð46Þ

Now, the last equation is what defines the pseudoinverse

Hy
ŝs (see (10)) and, therefore, it is satisfied, by construc-

tion, when

r̂r ¼ Hy
ŝsI ¼ �ðŝsÞ: ð47Þ

This shows that, if ŝs is a stationary point of �, its

corresponding r̂r must be of the form �ðŝsÞ. The computa-

tion of (38) returns

1

2
rs ð~ssÞ ¼ ITH?

~ss
_HH?
~ss I ¼ 0: ð48Þ

(¼Þ Let us now assume that rs ð~ssÞ ¼ 0 and let ~rr ¼ �ð~ssÞ.
We want to show that rs�ð~rr; ~ssÞ ¼ 0, that is, (44) is

satisfied with ŝs ¼ ~ss (that (46) is satisfied follows directly

from our choice of ~rr from (47)). To this end, notice that

H?
s Hy

s

� �� ¼ Hy
s

� ���HsH
y
s H

y
s

� ��
¼ Hy

s

� ��� HsH
y
s

� ��
Hy
s

� ��
¼ 0

ð49Þ

and, therefore, substituting the expression of _HH?
s

(obtained in Lemma 1) and the expression for ~rr ¼ �ð~ssÞ
in (48), we obtain

0 ¼ 1

2
rs ð~ssÞ ¼ ITH?

~ss
_HH?
~ss I ¼ �ITH?

~ss
_HH~ssH

y
~ssI

¼ ðH~ssH
y
~ssH~ss~rrÞT _HH~ss~rr� IT _HH~ss~rr

¼ 1

2
rs�ð~rr; ~ssÞ:

ð50Þ

¼)Þ Now, let (44) and (46) hold for ŝs; r̂r. All we need to

show is that rs ðŝsÞ ¼ 0. Since r̂r satisfies (47) because of

(46), we can read (50) backward and have

0 ¼ 1

2
rs�ðr̂r; ŝsÞ ¼ Hŝsr̂rð ÞT _HHŝsr̂r� IT _HHŝsr̂r

¼ HŝsH
y
ŝsI

� �T
_HHŝsH

y
ŝsI � IT _HHŝsH

y
ŝsI

¼ �ITH?
ŝs

_HHŝsH
y
ŝsI

¼ ITH?
ŝs

_HH?
ŝs I

¼ 1

2
rs ðŝsÞ:

ð51Þ

which concludes the proof. tu
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