
Faà di Bruno’s formula for variational calculus

Daniel E. Clark and Jeremie Houssineau

School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK.

Abstract

This paper determines the general formula for describing differentials of compos-
ite functions in terms of differentials of their factor functions. This generalises
the formula commonly attributed to Faà di Bruno to functions in locally con-
vex topological vector spaces. The result highlights the general structure of the
higher-order chain rule in terms of partitions of the directions.

1. Introduction

Mathematicians have investigated formulae for expressing higher-order deriva-
tives of composite functions in terms of derivatives of their factor functions for
over 200 years. These formulae are often attributed to Faà di Bruno [4], though
Craik [3] recently highlighted a number of researchers preceding his works, the
earliest of which is thought to be by Arbogast [1]. Despite the fact that the idea
of expressing these formulae in terms of derivatives of the factor functions is not
new, a number of recent works have appeared on this topic, including those by
Hardy [6] and Ma [8] on partial derivatives, and an alternative approach was
presented by Huang et al. for Fréchet derivatives [7], though the general form
for variational calculus was previously undetermined.

The paper is structured as follows. Section 2 describes the Gâteaux dif-
ferential [5] and the chain differential [2]. Section 3 determines the general
higher-order chain rule. The paper concludes with a short discussion in Section
4.

2. Gâteaux differentials and chain differentials

In this section we discuss two different forms of differential, the Gâteaux
differential [5] and the chain differential [2].

We justify adopting the chain differential to determine Faà di Bruno’s for-
mula in Section 3, since it is possible to determine the chain rule whilst main-
taining the general structure.

2.1. Gâteaux differentials

The following two definitions describe the Gâteaux differential and its nth-
order differential.
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Definition 1 (Gâteaux differential). Let X and Y be locally convex topo-
logical vector spaces, and let Ω be an open subset of X and let f : Ω→ Y . The
Gâteaux differential at x ∈ Ω in the direction η ∈ X is

δf(x; η) = lim
ε→0

1

ε
(f(x+ εη)− f(x)) (1)

when the limit exists. If δf(x; η) exists for all η ∈ X then f is Gâteaux differ-
entiable at x. The Gâteaux differential is homogeneous of degree one in η, so
that for all real numbers α, δf(x;αη) = αδf(x; η).

Definition 2 (nth-order Gâteaux differential). The nth-order variation of
f(x) in directions η1, . . . , ηn ∈ X is defined recursively with

δnf (x; η1, . . . , ηn) = δ
(
δn−1f (x; η1, . . . , ηn−1) ; ηn

)
.

2.2. Chain differentials

Due to the lack of continuity properties of the Gâteaux differential, further
constraints are required in order to derive a chain rule. Bernhard [2] proposed
a new form of Gâteaux differential defined with sequences, which he called the
chain differential, that is not as restrictive as the Fréchet derivative though it
is still possible to find a chain rule that maintains the general structure.

Definition 3 (Chain differential). The function f : X → Y , where X and
Y are locally convex topological vector spaces, has a chain differential δf(x; η)
at x in the direction η if, for any sequence ηn → η ∈ X, and any sequence of
real numbers θn → 0, it holds that the following limit exists

δf(x; η) = lim
n→∞

1

θn
(f(x+ θnηn)− f(x)) .

Lemma 1 (Chain rule, from [2], Theorem 1). Let X, Y and Z be locally
convex topological vector spaces, f : Y → Z , g : X → Y and g and f have
chain differentials at x in the direction η and at g(x) in the direction δg(x; η)
respectively. Let h = f ◦ g, then h has a chain differential at x in the direction
η, given by the chain rule

δh(x; η) = δf(g(x); δg(x; η)).

In order to determine the general higher-order chain rule, it is useful to
introduce the partial and total chain differentials as follows.

Definition 4 (Partial chain differential). Let {Xi}i=1:n and Y be locally
convex topological vector spaces. The function f : X1 × . . . × Xn → Y has
a partial chain differential with respect to the ith variable δif(x1, . . . , xn; η)
at (x1, . . . , xn) in the direction η if, for any sequence ηm → η ∈ X, and any
sequence of real numbers θm → 0, it holds that the following limit exists

δif(x1, . . . , xn; η) = lim
m→∞

1

θm
(f(x1, . . . , xi + θmηm, . . . , xn)− f(x1, . . . , xn)) .
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Theorem 1 (Total chain differential). Let {Xi}i=1:n and Y be locally con-
vex topological vector spaces. The function f : X1 × . . . ×Xn → Y has a total
chain differential δf at (x1, . . . , xn) if

1. all the partial chain differentials exist in a neighbourhood Ω ⊆ X1×. . .×Xn

of (x1, . . . , xn) and in any direction, and

2. δif is continuous over Ω×Xi.

Then for η ∈ X1 × . . .×Xn such that η = (η1, . . . , ηn),

δf(x1, . . . , xn; η) =

n∑
i=1

δif(x1, . . . , xn; ηi).

Proof. The result is proved in the case n = 2 from which the general case can
be straightforwardly deduced:

δf (x, y; (η, ξ)) = lim
r→∞

θ−1
r [f(x+ θrηr, y + θrξr)− f(x, y)]

= lim
r→∞

(
θ−1
r [g1(y + θrηr)− g1(y)] + θ−1

r [g2(x+ θrηr)− g2(x)]
)
,

where we define g1(y) and g2(x) as follows: g1(y) = f(x+ θrηr, y),

g2(x) = f(x, y).

Given θr 6= 0, define h : R→ R as h(t) = g1(y + tξr). From the mean value
theorem for real-valued functions, there exists cy ∈ [0, θr] such that

θ−1
r [h(θr)− h(0)] =

dh

dt

∣∣∣∣
t=cy

= δh(cy; 1),

which, when replacing h(t) by g1(y + tξr), can be rewritten

θ−1
r [g1(y + θrξr)− g1(y)] = δ (g1(y + cyξr); 1)

= δg1(y + cyξr; ξr),

where Lemma 1 has been used. Similarly for g2(x), there exists cx ∈ [0, θr] such
that

θ−1
r [g2(x+ θrηr)− g2(x)] = δg2(x+ cxηr; ηr).

The last step in the proof is to demonstrate that the limit of the following
term∣∣δg2(x+ cxηr; ηr) + δg1(y + cyξr; ξr)− δ1f (x, y; ηr)− δ2f (x, y; ξr)

∣∣, (2)

is equal to 0 when r →∞. By the triangle inequality, (2) is bounded above by
the following summation∣∣δg2(x+ cxηr; ηr)− δ1f (x, y; ηr)

∣∣+
∣∣δg1(y + cyξr; ξr)− δ2f (x, y; ξr)

∣∣.
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Substituting g1 and g2 with f , we have∣∣δ1f (x+ cxηr, y; ηr)− δ1f (x, y; ηr)
∣∣+
∣∣δ2f (x, y + cyξr; ξr)− δ2f (x, y; ξr)

∣∣,
which tends to 0 when r →∞ because of the continuity of δ1f and δ2f .

The following result is then proved:

δf (x, y; (η, ξ)) = δ1f (x, y; η) + δ2f (x, y; ξ)

which is equivalent to the Proposition 3 in [2].

3. Faà di Bruno’s formula

The next result generalises the higher-order chain rule to variational calculus.

Theorem 2 (General higher-order chain rule). Let X, Y and Z be locally
convex topological vector spaces. Assume that g : X → Y has higher order chain
differentials in any number of directions in the set {η1, . . . , ηn} ∈ Xn and that
f : Y → Z has higher order chain differentials in any number of directions in
the set {δmg(x;Sm)}m=1:n, Sm ⊆ {η1, . . . , ηn}. Assume additionally that for
all 1 ≤ m ≤ n, δmf(y; ξ1, . . . , ξm) is continuous on an open set Ω ⊆ Y m+1

and linear with respect to the directions ξ1, . . . , ξm, the nth-order variation of
composition f ◦ g in directions η1, . . . , ηn at point x ∈ X is given by

δn(f ◦ g)(x; η1, . . . , ηn) =
∑

π∈Π(η1:n)

δ|π|f
(
g(x); ξπ1

(x), . . . , ξπ|π|(x)
)
,

where ξω(x) = δ|ω|g
(
x;ω1, . . . , ω|ω|

)
is the |ω|th-order chain differential of g in

directions {ω1, . . . , ω|ω|} ⊆ {η1, . . . , ηn}. Π(η1:n) represents the set of partitions
of the set {η1, . . . , ηn} and |π| denotes the cardinality of the set π.

Proof. Lemma 1 gives the base case n = 1. For the induction step, we apply
the differential operator to the case n to give the case n + 1 and show that it
involves a summation over partitions of elements η1, . . . , ηn+1 in the following
way

δn+1(f◦g)(x; η1, . . . , ηn+1) =
∑

π∈Π(η1:n)

δ
(
δ|π|f

(
g(x); ξπ1

(x), . . . , ξπ|π|(x)
)

; ηn+1

)
.

(3)
The main objective in this proof is to calculate the term

δ
(
δkf (g(x);h1(x), . . . , hk(x)) ; η

)
. (4)

The additional differentiation with respect to η applies to every function on
X, i.e. to g and to the hi, where 1 ≤ i ≤ k. To highlight the structure of this
result, we can define a multi-variate function F such that

F : Y k+1 → Z

(y0, . . . , yk) 7→ δkf(y0; y1, . . . , yk),
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so that (5) can be rewritten δ
(
F (g(x), h1(x), . . . , hk(x)); η(k+1)

)
, when denoting

η(k) = (η, . . . , η) ∈ Xk. Using Theorem 1 we find

δ
(
F (g(x), h1(x), . . . , hk(x)); η(k+1)

)
=

k+1∑
i=1

δi (F (g(x), h1(x), . . . , hk(x)); η) .

(5)
From this point, differentiation with respect to g(x) has to be dealt with

separately due to the different properties of F with respect to its arguments.

• Consider the first term of the summation in (6):

δ1 (F (g(x), h1(x), . . . , hk(x)); η) . (6)

Let θm → 0, η(m) → η, and let φm be defined as

φm(x) = θ−1
m (g(x+ θmη

(m))− g(x)).

Following Theorem 1 in Bernhard [2], we have
φm(x)→ δg(x; η),

g(x+ θmη
(m)) = g(x) + θmφm(x).

(7)

One can then rewrite (7) as the limit when m→∞ of

θ−1
m (F (g(x) + θmφm(x), h1(x), . . . , hk(x))− F (g(x), h1(x), . . . , hk(x))) ,

which, when taking the limit and using (8), can be expressed as

δ1 (F (g(x), h1(x), . . . , hk(x)); η) = δ1F (g(x), h1(x), . . . , hk(x); δg(x, η)).
(8)

• Now consider all the other terms in (6):

δi (F (g(x), h1(x), . . . , hk(x)); η) , 2 < i ≤ k + 1. (9)

Let θm → 0 and η(m) → η. The terms in (10) can be expressed as the
limit when m→∞ of

θ−1
m

(
F (g(x), h1(x), . . . , hi(x+θmη

(m)), . . . , hk(x))−F (g(x), h1(x), . . . , hk(x))
)
.

However, due to the linearity of F with respect to all its arguments except
the first, the previous expression can be simplified and written as

F (g(x), h1(x), . . . , θ−1
m

(
hi(x+ θmη

(m))− hi(x)
)
, . . . , hk(x)).

Taking the limit, this becomes

δi (F (g(x), h1(x), . . . , hk(x)); η) = F (g(x), h1(x), . . . , δhi(x, η), . . . , hk(x)).
(10)
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Considering k = |π|, η = ηn+1 and hi = ξπi and replacing the results (9)
and (11) into (4), we find

δn+1(f ◦ g)(x; η1, . . . , ηn+1) =∑
π∈Π(η1:n)

δ|π|+1f
(
g(x); ξπ1

(x), . . . , ξπ|π|(x), δg(x, ηn+1)
)

+
∑

π∈Π(η1:n)

|π|∑
i=1

δ|π|f
(
g(x); ξπ1

(x), . . . , δξπi(x; ηn+1), . . . , ξπ|π|(x)
)
.

Following a similar argument used for the recursion of Stirling numbers of
the second kind and their relation to Bell numbers [9, p74], the result above
can be viewed as a means of generating all partitions of n+ 1 elements from all
partitions of n elements: The first term corresponds to the creation of a new
subset only containing ηn+1, and each term in the second summation appends
ηn+1 to one of the existing subset in π ∈ Π(η1:n). This argument follows similar
arguments previously used for ordinary and partial derivatives [8, 7, 6]. Hence
the result is proved by induction.

4. Discussion

It is worth highlighting the structure of the result. In other forms of chain
rule, Faà di Bruno’s formula is a sum over partitions of products. However, in
the general form for variational calculus, the outer functional has variations in
directions that themselves are differentials of the inner functional.
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