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Abstract Orthogonal frequency division multiplexing (OFDM) is becoming a fundamental
technology in future generation wireless communications. Call admission control is an effec-
tive mechanism to guarantee resilient, efficient, and quality-of-service (QoS) services in
wireless mobile networks. In this paper, we present several call admission control algorithms
for OFDM-based wireless multiservice networks. Call connection requests are differentiated
into narrow-band calls and wide-band calls. For either class of calls, the traffic process is
characterized as batch arrival since each call may request multiple subcarriers to satisfy its
QoS requirement. The batch size is a random variable following a probability mass function
(PMF) with realistically maximum value. In addition, the service times for wide-band and
narrow-band calls are different. Following this, we perform a tele-traffic queueing analysis for
OFDM-based wireless multiservice networks. The formulae for the significant performance
metrics call blocking probability and bandwidth utilization are developed. Numerical investi-
gations are presented to demonstrate the interaction between key parameters and performance
metrics. The performance tradeoff among different call admission control algorithms is dis-
cussed. Moreover, the analytical model has been validated by simulation. The methodology

Y. Zhang (B)
Simula Research Laboratory, Martin Linges vei 17, Fornebu, P. O. Box 134, 1325 Lysaker, Norway
e-mail: yanzhang@ieee.org

Y. Chen
University of Greenwich, London, UK
e-mail: y.chen@greenwich.ac.uk

J. He
Swansea University, Swansea, UK
e-mail: j.he@swansea.ac.uk

C.-X. Wang
Heriot Watt University, Edinburgh, UK
e-mail: cheng-xiang.wang@hw.ac.uk

A. V. Vasilakos
University of Western Macedonia, Athens, Greece
e-mail: vasilako@ath.forthnet.gr

123



100 Y. Zhang et al.

as well as the result provides an efficient tool for planning next-generation OFDM-based
broadband wireless access systems.

Keywords OFDM · Subcarrier allocation · Call admission control · Call blocking
probability · Bandwidth utilization · Queueing system · Wireless multiservice networks

1 Introduction

Orthogonal frequency division multiplexing (OFDM) is a digital multi-carrier modulation
scheme in which a signal is partitioned into several subchannels at different frequency.
OFDM-based systems are able to deliver high data rates, achieve high spectral efficiencies,
operate in hostile multipath radio environments, and reduce the power consumption. Due
to these advantages, OFDM is becoming a fundamental technology in wireless communi-
cations and is a widely adopted multiple access scheme in a number of wireless standards,
e.g., IEEE 802.11a/g for wireless local area networks (Wireless LAN), IEEE 802.16a/d/e
for wireless metropolitan area networks (Wireless MAN), digital audio broadcasting/digital
video broadcasting (DAB/DVB) and satellite radio etc. [1–5].

One of the most significant features of OFDM wireless systems is the flexibility in subcar-
rier allocation for satisfying various service requirements [6,7]. The studies have focused on
specific subcarrier allocation algorithms to accommodate users under some constraints (e.g.,
[8–10] and the references therein). In contrast, the system analysis and model for OFDM sub-
carrier allocation is rarely studied. The tele-traffic modeling is significant for designing call
admission control mechanisms and also equally important for guaranteeing resilient services
subject to fluctuating traffic situations. This is also equally important for service operators
implementing and deploying OFDM wireless networks. Recently, the work [7] performed
a system queueing model for subcarrier allocation issues in the OFDM-based wireless net-
works. In this work [7], a single service class is considered. It is believed that supporting
multimedia services is an indispensable requirement in future generation wireless networks.
Hence, it becomes necessary and significant to investigate the call admission control mecha-
nisms and OFDM subcarrier allocation in wireless multiservice networks, which is however
not studied in the literature.

The contributions in the paper include three aspects. Firstly, several call admission control
schemes are proposed and studied for OFDM-based wireless systems with multiple services.
Secondly, system modeling and analysis will be performed for call admission control mech-
anisms. The call admission control is characterized as a multi-class multi-server batch arrival
queueing system to capture the unique property of the subcarrier allocation problem. The
queueing model has the following properties: (1) It has multiple batch arrival processes; (2)
the processes have different service times; (3) the batch size is not fixed but supposed as a
random variable following a probability mass function; (4) the batch size is not infinite but has
a practical maximum value. Either of the properties above could significantly complicate the
system dynamics and exhibits different characteristics. Thirdly, extensive numerical exam-
ples are presented to demonstrate the performance tradeoff among the proposed schemes.
We also show the interaction between the performance metrics and tele-traffic parameters,
which is helpful to design OFDM-based wireless multiservice networks.

The rest of the paper is organized as follows. In Sect. 2, we describe the system queueing
model. In this section, we also present the multi-dimensional Markov chain and we derive
the performance measures. Numerical results are given in Sect. 3, followed by concluding
remarks in Sect. 4.
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2 System Model and Call Admission Control Algorithms

2.1 Traffic Model

Let C denote the number of subcarriers in a cell. Denote Rb as the average data rate per
subcarrier. The particular value of Rb can be calculated from the statistical values of the
adaptive modulation coding (AMC) parameters for each subcarrier. As a result, a cell has
totally C Rb rate resources. In multiservice wireless networks, we categorize the call con-
nections into narrow-band call and wide-band call. An exemplary system can be voice/data
integrated wireless networks. For each call, it requests multiple subcarriers to satisfy the data
rate transmission requirement. As a result, the call requests can be seen as a batch arrival
process. It is noteworthy that, for the narrow-band call, it is reasonable to assume multiple
subcarriers instead of a single subcarrier since one subcarrier may not be sufficient to support
its data rate request in an OFDM wireless system.

2.1.1 Batch Blocking Scheme

Upon the arrival of a narrow-band call, the call may request a number of subcarriers k to
satisfy the data rate requirement. If the number of unoccupied subcarriers is smaller than
the required number of subcarriers k, then the call is blocked. Otherwise, if the number of
free subcarriers is equal or greater than the batch size k, then the call will be accepted. This
policy is also applicable to wide-band calls. That is, upon the moment of a wide-band call
arrival, the call may request a number of subcarriers k to satisfy the data rate requirement. If
the number of unoccupied subcarriers is smaller than k, then the wide-band call is blocked.
Otherwise, if the number of free subcarriers is equal or greater than k, then the wide-band
call will be accepted. This call admission control mechanism is named as batch blocking
scheme.

2.1.2 Partial Blocking Scheme

When a narrow-band call arrives, and the number of available subcarriers is less than the
required number, the call is not blocked but accepted with degraded QoS. In other words,
if an arriving narrow-band call requests k subcarriers, while the number of free subcarriers
is smaller than the batch size k, then the narrow-band call will be accepted with a provided
service of these free subcarriers. This policy can also be applied to wide-band calls. This call
admission control mechanism is named as partial blocking scheme.

Either the batch blocking scheme or the partial blocking scheme can be applicable to
narrow-band calls. Similarly, wide-band calls can employ either the batch blocking scheme
or the partial blocking scheme. As a consequence, there are four combinations.

– COMB1: Both the narrow-band and wide-band calls employ the batch blocking scheme
– COMB2: Narrow-band calls employ the batch blocking scheme while wide-band calls

use the partial blocking scheme
– COMB3: Narrow-band call employs the partial blocking scheme while wide-band calls

use the batch blocking scheme
– COMB4: Both the narrow-band and wide-band calls employ the partial blocking scheme

In the following, we will develop an analytical model and a simulation model to evaluate the
trade-off among these different mechanisms.
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The narrow-band call connections are consequently characterized as follows. The
narrow-band call requests follow the Poisson process with the mean batch (or group) arrival
rate λn . At each arrival instant, the number of the batch size is denoted as xn . Let the dis-
crete random variable xn follow the probability mass function (PMF) xn, j ( j = 1, 2, . . . , Nn)

where Nn Rb denotes the highest data rate that a narrow-band call may request. Then,

Nn∑

j=1

xn, j = 1; 1 ≤ j ≤ Nn ≤ C. (1)

The average value of the group size is given by

xn =
Nn∑

j=1

j xn, j , (2)

where X represents the expected value of the random variable X . Equivalently, xn Rb repre-
sents the average data rate that a narrow-band call requests. The service time is exponentially
distributed with mean 1/µn . Here, the exponential distributed service time is not exceptional.
The simulation results in Sect. 3 indicate that different distribution functions for the service
time lead to insignificant discrepancy on the performance metrics. Hence, the exponential
distribution for the service time is able to provide sufficient accuracy.

Similarly, the wide-band call requests follow the Poisson process with the mean batch
arrival rate λw . At each arrival moment, the number of batch size is denoted as xw . Let this
discrete random variable xw follow the PMF xw, j ( j = 1, 2, . . . , Nw) where Nw denotes
the highest data rate Nw Rb that a wide-band call may request. Then,

Nw∑

j=1

xw, j = 1; 1 ≤ j ≤ Nw ≤ C. (3)

The average value of the group size in a wide-band call is given by

xw =
Nw∑

j=1

j xw, j . (4)

The service time is exponentially distributed with mean 1/µw . Hence, the cell has two batch
arrival processes. The batch size for each process is a random variable having a maximum
value. The service times for the two processes are different. Thereafter, it can be characterized
as a multi-class multi-server batch arrival queueing system.

2.2 COMB1: Both Narrow-band Call and Wide-band Call Use Batch Blocking Scheme

In this strategy, at the time at which a narrow-band call arrives, if the number of available
subcarriers is less than the required number of subcarrier, the call is blocked. In other words,
if an arriving narrow-band call requests kn (1 ≤ kn ≤ Nn) subcarriers, while the number
of unoccupied subcarriers is smaller than the batch size kn , then the narrow-band call is
blocked. This policy is also applicable to wide-band calls. Define the system state as (i, j)
with i representing the number of subcarriers used by narrow-band calls and j the number
of subcarriers used by wide-band calls. Then, the state space � is given by

� = {(i, j)|0 ≤ i ≤ C, 0 ≤ j ≤ C, 0 ≤ i + j ≤ C}.
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Fig. 1 An example of the transit rate diagram in the COMB1 situation (C = 4, Nn = 1, Nw = 2)

Figure 1 illustrates an intuitive example when C = 4, Nn = 1, Nw = 2. We take the
specific state (1, 2) as an example. There are four events that can trigger a state transition
from the current state (1, 2):

– Narrow-band call arrival: transit to the neighbouring state (2, 2) with rate λn .
– Narrow-band call completion: transit to the neighbouring state (0, 2) with rate µn .
– Wide-band call arrival: transit to the neighbouring state (1, 3) with rate λwxw,1. Note that

the transition to state (1, 4) is not feasible, because this state is invalid in the state space
�. In addition, if this wide-band call requires two subcarriers with rate λw,2, then the call
is blocked without state transition.

– Wide-band call completion: transit to the neighbouring state (1, 1) with rate 2µw .

Following the similar reasoning, we are able to analyze the state transition entering or
exiting a particular state; and obtain the transit rate diagram with generalized parameters. Let
π(i, j) be the steady state probability distribution for a valid state (i, j) ∈ �. We develop
the set of global balance equations. In what follows, bi, j represents the total transit rate out
of the state (i, j) ∈ �.

For the state (i, j) = (0, 0),

b0,0π(0, 0) = µnπ(1, 0) + µwπ(0, 1) (5)

where b0,0 = λn + λw .
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For the states (i, j) with 1 ≤ i < C and j = 0,

bi,0π(i, 0) = (i + 1)µnπ(i + 1, 0) +
min (i,Nn)∑

k=1

xn,kλnπ(i − k, 0) + µwπ(i, 1) (6)

where

bi,0 = iµn +
min (C−i,Nn)∑

k=1

xn,kλn +
(C−i,Nw)∑

k=1

xw,kλw. (7)

For the states (i, j) with i = 0 and 1 ≤ j < C ,

b0, jπ(0, j) = ( j + 1)µwπ(0, j + 1)

+
min ( j,Nw)∑

k=1

xw,kλwπ(0, j − k) + µnπ(1, j) (8)

where

b0, j = jµw +
min (C− j,Nw)∑

k=1

xw,kλw +
(C− j,Nn)∑

k=1

xn,kλn . (9)

For the states (i, j) with 0 < i + j < C ,

bi, jπ(i, j) = (i + 1)µnπ(i + 1, j) + ( j + 1)µwπ(i, j + 1)

+
min (i,Nn)∑

k=1

xn,kλnπ(i − k, j) +
min ( j,Nw)∑

k=1

xw,kλwπ(i, j − k)

where

bi, j = iµn + jµw +
min (C−i− j,Nn)∑

k=1

xn,kλn +
min (C−i− j,Nw)∑

k=1

xw,kλw. (10)

For the states (i, j) with i + j = C ,

bi, jπ(i, j) =
min (i,Nn)∑

k=1

xn,kλnπ(i − k, j) +
min ( j,Nw)∑

k=1

xw,kλwπ(i, j − k) (11)

where bi, j = iµn + jµw .
In addition, the summation of all steady state probabilities satisfies the normalization

constraint
∑

(i, j)∈� π(i, j)= 1. Combining the equations above, we can solve the set of the
linear equations and consequently the steady state probability. In particular, the set of linear
equations can be solved by using an iterative method called successive over-relaxation (SOR)
[11,12]. Then, we can obtain the steady state probability.

Let Pn and Pw denote the narrow-band and wide-band call blocking probabilities, respec-
tively. At the time when a particular narrow-band (or wide-band) call with batch size k arrives,
and the number of available subcarriers is less than k, the call is blocked. As a result, the
narrow-band call blocking probability is expressed as

Pn =
∑

(i, j)∈�

π(i, j)
Nn∑

k=C−i− j+1

xn,k . (12)
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The wide-band call blocking probability is given by

Pw =
∑

(i, j)∈�

π(i, j)
Nw∑

k=C−i− j+1

xw,k . (13)

The bandwidth utilization γ is defined as the ratio of the average number of busy subcar-
riers to the total number of subcarriers C , i.e.,

γ =
∑

(i, j)∈�(i + j)π(i, j)

C
. (14)

2.3 COMB2: Narrow-band Call Uses Batch Blocking Scheme while Wide-band
Call Use Partial Blocking Scheme

In this mechanism, the narrow-band call follows the batch blocking scheme while the wide-
band call follows the partial blocking scheme. We develop the set of global balance equations.

For the state (i, j) = (0, 0)

b0,0π(0, 0) = µnπ(1, 0) + µwπ(0, 1) (15)

where b0,0 = λn + λw .
For the states (i, j) with 1 ≤ i < C and j = 0,

bi,0π(i, 0) = (i + 1)µnπ(i + 1, 0) +
min (i,Nn)∑

k=1

xn,kλnπ(i − k, 0) + µwπ(i, 1) (16)

where

bi,0 = iµn +
min (C−i,Nn)∑

k=1

xn,kλn + λw. (17)

For the states (i, j) with i = 0 and 1 ≤ j < C ,

b0, jπ(0, j) = ( j + 1)µwπ(0, j + 1)

+
min ( j,Nw)∑

k=1

xw,kλwπ(0, j − k) + µnπ(1, j) (18)

where

b0, j = jµw + λw +
(C− j,Nn)∑

k=1

xn,kλn . (19)

For the states (i, j) with 0 < i + j < C ,

bi, jπ(i, j) = (i + 1)µnπ(i + 1, j) + ( j + 1)µwπ(i, j + 1)

+
min (i,Nn)∑

k=1

xn,kλnπ(i − k, j) +
min ( j,Nw)∑

k=1

xw,kλwπ(i, j − k)

where

bi, j = iµn + jµw +
min (C−i− j,Nn)∑

k=1

xn,kλn + λw. (20)
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For the states (i, j) with i + j = C ,

bi, jπ(i, j) =
min (i,Nn)∑

k=1

xn,kλnπ(i − k, j) +
min ( j,Nw)∑

k=1

[
Nw∑

l=k

xw,l

]
λwπ(i, j − k)

(21)

where bi, j = iµn + jµw .
The summation of all steady state probabilities satisfies the normalization constraint. We

assume that the system state is (i, j) when a call arrives. The narrow-band call blocking
probability is given by

Pn =
∑

(i, j)∈�

π(i, j)
Nn∑

k=C−i− j+1

xn,k . (22)

A wide-band call is blocked when all subcarriers are occupied. Hence, the wide-band call
blocking probability is given by

Pw =
∑

(i, j)∈� and (i+ j)=C

π(i, j). (23)

The bandwidth utilization is given by (14).

2.4 COMB3: Narrow-band Call Uses Partial Blocking Scheme While Wide-band
Call Use Batch Blocking Scheme

In this mechanism, the narrow-band call follows the partial blocking scheme while the wide-
band call follows the batch blocking scheme. We develop the set of global balance equations.

For the state (i, j) = (0, 0),

b0,0π(0, 0) = µnπ(1, 0) + µwπ(0, 1) (24)

where b0,0 = λn + λw .
For the states (i, j) with 1 ≤ i < C and j = 0,

bi,0π(i, 0) = (i + 1)µnπ(i + 1, 0) +
min (i,Nn)∑

k=1

xn,kλnπ(i − k, 0) + µwπ(i, 1) (25)

where

bi,0 = iµn + λn +
(C−i,Nw)∑

k=1

xw,kλw. (26)

For the states (i, j) with i = 0 and 1 ≤ j < C ,

b0, jπ(0, j) = ( j + 1)µwπ(0, j + 1)

+
min ( j,Nw)∑

k=1

xw,kλwπ(0, j − k) + µnπ(1, j) (27)
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where

b0, j = jµw +
min (C− j,Nw)∑

k=1

xw,kλw + λn . (28)

For the states (i, j) with 0 < i + j < C ,

bi, jπ(i, j) = (i + 1)µnπ(i + 1, j) + ( j + 1)µwπ(i, j + 1)

+
min (i,Nn)∑

k=1

xn,kλnπ(i − k, j) +
min ( j,Nw)∑

k=1

xw,kλwπ(i, j − k)

where

bi, j = iµn + jµw + λn +
min (C−i− j,Nw)∑

k=1

xw,kλw. (29)

For the states (i, j) with i + j = C ,

bi, jπ(i, j) =
min (i,Nn)∑

k=1

[ Nn∑

l=k

xn,l

]
λnπ(i − k, j) +

min ( j,Nw)∑

k=1

xw,kλwπ(i, j − k) (30)

where bi, j = iµn + jµw .
Again, the summation of all steady state probabilities satisfies the normalization constraint.

The narrow-band call blocking probability is given by

Pn =
∑

(i, j)∈� and (i+ j)=C

π(i, j). (31)

The wide-band call blocking probability is given by

Pw =
∑

(i, j)∈�

π(i, j)
Nw∑

k=C−i− j+1

xw,k . (32)

The bandwidth utilization is given by (14).

2.5 COMB4: Both Narrow-band Call and Wide-band Call Use Partial Blocking Scheme

In this strategy, both narrow-band call and wide-band call employ partial blocking scheme.
We express the set of global balance equations.

For the state (i, j) = (0, 0),

b0,0π(0, 0) = µnπ(1, 0) + µwπ(0, 1) (33)

where b0,0 = λn + λw .
For the states (i, j) with 1 ≤ i < C and j = 0,

bi,0π(i, 0) = (i + 1)µnπ(i + 1, 0) + µwπ(i, 1)

+
min (i,Nn)∑

k=1

xn,kλnπ(i − k, 0) (34)

where bi,0 = iµn + λn + λw .
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For the states (i, j) with i = 0 and 1 ≤ j < C ,

b0, jπ(0, j) = ( j + 1)µwπ(0, j + 1) + µnπ(1, j)

+
min ( j,Nw)∑

k=1

xw,kλwπ(0, j − k) (35)

where b0, j = jµw + λn + λw .
For the states (i, j) with 0 < i + j < C ,

bi, jπ(i, j) = (i + 1)µnπ(i + 1, j) + ( j + 1)µwπ(i, j + 1)

+
min (i,Nn)∑

k=1

xn,kλnπ(i − k, j)

+
min ( j,Nw)∑

k=1

xw,kλwπ(i, j − k) (36)

where bi, j = iµn + jµw + λn + λw .
For the states (i, j) with i + j = C ,

bi, jπ(i, j) =
min (i,Nn)∑

k=1

[ Nn∑

l=k

xn,l

]
λnπ(i − k, j)

+
min ( j,Nw)∑

k=1

[
Nw∑

l=k

xw,l

]
λwπ(i, j − k) (37)

where bi, j = iµn + jµw .
The narrow-band call and wide-band call blocking probabilities are expressed as

Pn = Pw =
∑

(i, j)∈� and (i+ j)=C

π(i, j).

The bandwidth utilization is given by (14).

3 Numerical Examples

In this section, we will validate the presented analysis via simulations. In addition, illustra-
tive numerical examples are presented to indicate the interaction between the performance
metrics and key parameters. Here, the performance metrics refer to the call blocking prob-
ability and bandwidth utilization. The key parameters include the traffic load and service
time distribution functions. Following the similar settings in [2], the downlink is based on
a multiple-input and multiple-output (MIMO) OFDM air interface. The average coding rate
is 2/3 with 16-QAM and spatial multiplexing mode. There are two transmit antennas and
up to four receive antennas. The system has a bandwidth of 5 MHz and consists of C = 32
subcarriers. Based on the settings, the peak throughput is 20.6 Mbps [2]. As a consequence,
each subcarrier has an average data rate Rb = 20.6 Mbps/32 = 659.2 kbps. To validate the
analytical model, we have developed a discrete event simulation program in C++.

Figure 2 shows the performance metrics in terms of narrow-band call traffic intensity,
which is defined as ρn = xnλn/(Cµn). The simulation results (indicated by a symbol over
each line) are presented for the purpose of validation. It is observed that the analysis and the
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Fig. 2 Performance metrics in terms of narrow-band call traffic intensity. The symbol in each line represents
the simulation result. (Nn = 4, Nw = 8, 1/µn = 1/µw = 180.0)

simulation match up with each other very well in all four situations. In addition, the three per-
formance metrics increase with the higher traffic intensity ρn , which is intuitively understand-
able. Comparing the four call admission control algorithms, we can observe that COMB3
is able to achieve the lowest narrow-band call blocking probability while COMB2 achieves
the lowest wide-band call blocking probability. With respect to the bandwidth utilization, the
difference between COMB2 and COMB3 is very small. Hence, if narrow-band calls demand
lower call blocking probability than wide-band calls, the algorithm COMB3 shall be used.
Otherwise, COMB2 can be employed. On the other hand, if both narrow-band calls and
wide-band calls have similar requirement on call blocking probability, the scheme COMB4
may be a choice, which is also able to achieve maximum bandwidth utilization in these
algorithms.

Figure 3 shows the performance metrics in terms of narrow-band call traffic intensity. Dif-
ferent from the previous example, the service times for the narrow-band and wide-band calls
are different. The symbol in the figure represents the simulation result. Again, the analysis
and the simulation agree with each other. With greater wide-band call traffic intensity, the
call blocking probability and bandwidth utilization in Fig. 3 are respectively higher than the
results in Fig. 2. Moreover, the similar performance tradeoff can be observed among the four
call admission control algorithms.

Figure 4 shows the performance metrics with different service time distributions in the
scheme COMB1. In each figure, the exponential distribution, Erlang distribution and hyper-
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Fig. 3 Performance metrics in terms of narrow-band call traffic intensity. The symbol in each line represents
the simulation result. (Nn = 4, Nw = 8, 1/µn = 180.0, 1/µw = 300.0)

Erlang distribution for the narrow-band and wide-band call service times are employed for
comparison. The hyper-Erlang distributed service times have the probability density function

0.4 × 0.8µke−0.8µk t + 0.6 × (2 × 1.2µk)
2te−2×1.2µk t , k ∈ {n, w}.

Here, a hyper-Erlang distributed service time is employed since a hyper-Erlang distribution
has been proven to be able to arbitrarily approximate to the distribution of any positive
random variable as well as measured data [13–15]. The comparison indicates that the dis-
crepancy is very small when employing different service time distributions to evaluate the
network performance. Hence, adopting the exponential distribution for the service times in
the queueing model enables to provide accurate results. It is noteworthy that we have exam-
ined the service time distribution effect in the schemes COMB2, COMB3 and COMB4.
Similarly, ignorable difference can be observed when we use different service time
distributions.

4 Conclusions

In this paper, four call admission control algorithms are proposed for OFDM-based wire-
less multiservice networks. Analytical models are presented to investigate the performance
tradeoff among these schemes. The good agreement between the analysis and simulation
results under various scenarios validates the correctness of the analytical queueing model.
The result indicates that the exponential distribution can provide sufficient accuracy for the
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Fig. 4 Performance metrics in terms of narrow-band call traffic intensity ρn with different service time
distribution functions in COMB1

service time in evaluating the call admission control policies. The methodology as well
as the result provide an efficient tool for building future generation OFDM-based wireless
multiservice networks.
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