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Abstract-White spaces refer to the unused frequency voids
across time or space. The vast existence of white spaces has
been validated by many measurements and is widely regarded
as an undesirable consequence of the fixed spectrum licensing
policy. In this paper, we apply stochastic geometry to study the
spatial distribution of white spaces in the presence of a random
primary network with homogeneous nodes. We show that with
a self-interfering constraint on the primary network, a large
portion of the total area will be detected as the white space
regardless of the density of the primary transmitters. Our finding
suggests that the existence of white spaces is not merely a by­
product of the artificial spectrum licensing policy but also an
inherent phenomenon of wireless communication systems. Two
main causes of the white spaces are the self-interfering constraint
and random network topology. Our model also suggests that
power control and topology-aware spectrum management are the
keys to eliminate white spaces and improve the overall spectrum
utilization.

I. INTRODUCTION

The radio frequency spectrum is a scarce and precious
natural resource that needs to be managed effectively. Mea­
surements on the temporal and geographical occupations of
the radio frequency revealed that only a small portion of the
spectrum had been efficiently utilized [1]. Such an underuti­
lization is commonly blamed on the fixed spectrum assignment
policy, which prohibits unlicensed radio access in the licensed
bands. Dynamic spectrum access (DSA) has been proposed
as a means to resolve this paradox of spectrum scarcity and
underutilization. It enables new wireless systems to dynami­
cally access/share the frequency band licensed to incumbents
(primary networks) on a negotiated or an opportunistic basis
[2], provided that the interference to the licensee is kept
insignificant.

Different DSA strategies have been proposed [2], ranging
from spectrum trading/dynamic spectrum allocation that allow
licensees to trade/lease their spectrum, open spectrum com­
mons that embrace an unlicensed philosophy, to hierarchical
schemes that permit secondary systems to access the spectrum
of primary systems under certain interference constraints. An
important type of the hierarchical DSA system is opportunistic
cognitive radio networks [3]-[5] that exploit the existence of
white spaces (spectrum holes) by means of radio environment
sensing and adaptive transceiver reconfiguration. The white
space is defined as the temporary or local frequency voids
unoccupied by the primary signals. Essentially, the use of
white spaces allows a secondary network to coexist with a
primary network in a way that the two systems are orthogonal.

White spaces exist in both the time and space domains.
Temporal white spaces come from the idle periods between
busty transmissions of the primary systems. For example,
[6] showed that the 802.11b WLAN channel supporting a
Skype conference call is idle for 89 percent of time. On the
other hand, spatial white spaces occur in the "remote" areas
where all the primary transmitters are sufficiently far away.
A prominent example of spatial white space is the TV bands
[7], [8] where the channels are interleaved so that a single sub­
band is used in separated regions rather than the entire country.
In this paper, we restrict our discussions to the spatial white
spaces. The term "white space" refers to "spatial white space"
in the rest of this paper.

Characterization and modeling of the white spaces are of
great importance for the planning and design of opportunistic
cognitive radio networks. Current understandings of the white
spaces are mostly empirical and are restricted to specific
bands (e.g., TV band) or measurement campaigns [1], [7],
[8]. These empirical understandings fail to give a macroscopic
characterization of the white spaces. Moreover, they provide
little insight regarding the cause of the white spaces, whose
existence is highly coupled with the characteristics of the
primary network. Therefore, a theoretical model that captures
the essential spatial characteristics of the white spaces is an
important research subject.

White space modeling is essentially a problem of spa­
tial spectrum sharing (or spatial reuse), which is a well­
investigated subject for both cellular (planned) networks [9]
and ad-hoc networks [10]. Different from previous works,
in this paper we study spatial spectrum sharing with a new
perspective by focusing on the area fraction of the white
spaces. Moreover, we use a stochastic geometry model [11]
to capture the statistical spatial properties of the white spaces.
Our investigations reveal several interesting insights. First, we
find that white spaces are naturally abundant in a randomized
primary network. Second, power control and topology man­
agement seem to be effective tools for a cognitive (secondary)
network to combat the randomness and improve the overall
spectrum utilization.

The remainder of this paper is organized as follows. Section
II introduces some basic stochastic geometric models, which
are then applied to our system model described in Section
III. In Section IV, we analyze the area fraction of the white
spaces and discuss the results and their implications. Finally,
conclusions are drawn in Section V.

978-1-4244-2064-3/08/$25.00 ©2008 IEEE 350

Authorized licensed use limited to: Heriot-Watt University. Downloaded on February 21,2010 at 12:01:50 EST from IEEE Xplore.  Restrictions apply. 



where A is the intensity of the germ process 'lJ and V is the
mean volume of a typical grain 30.

III. SYSTEM MODEL

We consider a random primary network on a plane operating
on a specific frequency band. The spatial distribution of the
white spaces ultimately depends upon the behaviors of the
primary transmitters, e.g., their locations and transmit powers.
Based on the locally perceived primary signal power level, a
point on the plane can be marked as either a black space,
grey space, or white space. The black spaces refer to spectra

where the X n are the germs and the 3 n are the primary grains
of the germ-grain model. In the case when 3 is stationary
it is useful to introduce the 'typical' grain 3 0, which is a
random closed set of the same distribution as the sets in the
sequence of primary grains 3 n but independent from 3 n and
the germs. An important measure of the germ-grain model is
the volume faction x, defined as the mean fraction of volume
occupied by 2: in a region of unit volume. When the grains
fails to overlap with probability one and 2: is stationary, then
the volume fraction is given by [11]

(5)

(4)

x = AV,

which yields a higher eventual density of points among some
other proposed hard-core process models [11]. The Matern
hard-core process is essentially a dependent thinning applied
to <I>, a stationary Poisson process of density A. The points
of <I> are marked independently random numbers uniformly
distributed over (0, 1). The dependent thinning retains the
point X of <I> (with mark m(x)) if the circle C(x, dmin )
contains no points of <I> with marks smaller than m(x).
Formally the thinning process <I>th is given by [11]

<I>th = {x E <I> : m(x) < m(y) for all y in <I> n C(x, dmin )}.
(1)

The density Ath of <I>th can be obtained as [11]

1 - exp (-A1rd~in)
Ath = d2 • (2)

1r min

Given dmin, the highest density yield by a Matern hard-core
process is then given by

Ar;hax = lim (Ath) = -d; (3)
,).---+00 1r min

We note that this density does not represent the closest possible
packing of the circles. In the closest packing, the centers of
the circles forms a regular cellular-like structure and we have
the point density Acell = 2/(J3d~in)'

D. Germ-grain models

Germ-grain models is an important example of a random set
models. Given a marked point process 'lJ == {[xn ; 3 n ]} where
the X n are points of ~d and the 3 n are compact subsets of ~d ,

a germ-grain model 3 is defined based on the point process
as the union given by [11]B. Thinning

There are three fundamental operations which produce
new point processes from old ones: thinning, clustering, and
superposition. Here we will review the thinning operations
only. A thinning operation uses some definite rule to delete
points of a point process <I>, thus yielding the thinned point
process <I>th. The simplest thinning is p-thinning. In this each
point of <I> has probability 1 - p of suffering deletion, and
its deletion is independent both of the locations and of the
possible deletions of any other points of <I>. Consequently,
p-thinning belongs to a class of thinning operations called
independent thinnings, which means there is no interaction
between the points, so that the thinning functions (which
are independent of <I» determine the operation completely. A
generalization allows dependence on the configuration of <I> ,

giving the class of dependent thinnings. The Matern hard-core
point process described in the following sub-section is a point
process resulting from dependent thinning.

C. Matern hard-core point process

A hard-core point process is a point process in which the
constituent points are forbidden to lie closer together than a
certain minimum distance, denoted as dmin . These hard-core
models serve to describe patterns produced by the locations of
centers of non-overlapping circles of radius r = dmin/2. Here
we will describe a model called the Matern hard-core process,

A. Stationary Poisson point process

Poisson point process is the simplest and most important
random point process. It serves as the basic building block
for other more complicated models. Theoretical definitions of
varieties of point process frequently make reference to Poisson
point processes. A random point pattern or pointprocess <I> can
be regarded as a random set <I> == {Xl,X2, ... } where Xi (1::;
i < 00) is given on the d-dimensional (Euclidean) space ~d

with ~ = (-00,00). In this paper we are only interested in
the plenary case giving d = 2. A stationary Poisson point
process is characterized by two fundamental properties: (1)
Poisson distribution of point counts, the number of points of
<I> in a bounded area A has a Poisson distribution of mean ,xA
for some constant A; (2) Independent scattering, the number
of points of <I> in k disjoint areas form k independent random
variables. The parameter A occurring in property (1) is called
the intensity or density and it gives the mean number of points
to be founded in a unit area. Property (2) is also known as the
"completely random" or "purely random" property.

II. PRELIMINARIES IN STOCHASTIC GEOMETRY

Stochastic geometry has been widely used to model the
nonuniformity typically observed in modem wireless net­
works: radio devices are not distributed uniformly and it is
therefore desirable to have enough flexibility in a model to
capture fluctuations in spatial diversity. In this section, we will
give a brief review of some basic concepts and principles in
stochastic geometry. Our review follows closely the text of
Stoyan [11].
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occupied by high power primary signals, while the grey spaces
refer to spectra occupied by low power primary signals. The
essence of the transmitter behaviors in a typical modem
wireless network can be captured by the following stochastic
models.

A. User distribution as Poisson point process

The locations of potential primary transmitters are modeled
as a stationary Poisson point process q> of intensity A. Such a
distribution for radios is widely used in the literature [12], [13].
For ad-hoc or mobile networks, this stationary Poisson point
process model is usually justified. Even for planned networks
(e.g., cellular network), a Poisson point pattern can still be
representative since the constraints (cost, building heights) on
the locations of base stations lead to an effective randomness
of the transmitter distribution [14].

B. Active transmitter distribution as Matern hard-core point
process

To avoid/mitigate self-interference, a subset of active trans­
mitters are selected among all the potential transmitters so
that every two active transmitters are spatially separated from
each other by at least a distance d min . Such a selection
process, enabled in practice by channel contention/allocation
protocols, is typically randomized to arbitrate the accesses of
all the potential primary transmitters. This random channel
contention can be mathematically treated as a dependent
thinning operation and the resulting set of active transmitters
can be modeled as Matern hard-core point processes q>th.

C. Radio propagation as germ-grain models

A propagation model is defined as a closed-set 3 n that
characterizes the areas of black/grey space around a trans­
mitter. Such a propagation model can be either deterministic
(pathloss-only channels) or random (fading channels). Using
the Matern hard-core processes q>th as the germs and the
propagation models as the grains, we can adopt the germ-grain
model 3 to represent the total areas of black/grey spaces. The
complementary set of 3, denoted as 3, characterizes the white
space areas. The use of such a germ-grain model implies that a
black/grey space is uniquely defined by a single transmitter. In
other words, we neglect the case where accumulating powers
from different transmitters give birth to new black/grey spaces.

In this paper we use two simple deterministic propagation
models. Both models belong to the category ofprotocol mod­
els and use the following assumptions: (1) uniform power: the
transmit powers of all active nodes are identical; (2) uniform
transmission and propagation environment: only the pathloss is
considered and the signal emitted by every transmitter presents
the same pathloss characteristic. In our first model, called
"black-white model", we only distinguish between the black
and white space. The grain =: (for black space) is given as
a circular disk of radius r, where r denotes the transmission
range. This simple model is useful in revealing interesting
insights without over-complicating the problem. The second

propagation model we consider is called the "black-grey­
white" model since it further distinguishes the grey space. A
new parameter R is incorporated into this model to denote the
interfering range of an active primary transmitter. As shown
in Fig. 1, the black space area is still the smaller disk of radius
r, while the grey space area is given by the concentric disk
of radius R excluding the areas of black spaces.

IV. AREA FRACTIONS OF WHITE SPACES

The properties of random sets can be characterized by
various random measures [11]. In this paper we are interested
in the .first moment measure on a plane, i.e., the area fraction.

A. Area fraction with black-white propagation model

We consider the area fraction Xb of the black spaces keeping
in mind that the area fraction of the white spaces is simply
XW = 1 - Xb. With the black-white propagation model, the
minimum distance dmin of two non-interfering transmitters is
d min = 2r, where r is the transmission range of an active
transmitter. Given dmin, the density of active transmitters
Am can be computed from (2). Moreover, since there is no
overlapping between two arbitrary disks of black space, (5)
can be directly applied to calculate the area fraction of the
black spaces, i.e.,

A 2 1 - exp( -4A1Tr
2

) (6)
Xb = th1Tr = 4

where A is the intensity of the primary transmitters. From
(6) we can see that Xb < 1/4 and thus XW > 3/4. In other
words, regardless of A and r, at least 75 percent of the plane
will be detected as the white space. This finding is somewhat
surprising since one would generally expect little existence
of the white space when the primary node density A is large
enough.

The above bound on Xb mainly results from the Matern
hard-core point process, which itself has a bound on the
maximum density of active transmitters given by (3). We note
that there are two basic properties of a Matern hard-core point
process. The first one is the minimum distance requirement.
Without such a requirement we can use stationary Poisson
point processes as the germs and the general germ-grain model
is reduced to a boolean model [11]. The corresponding area
fraction of a boolean model is given by [11]

(7)

Obviously, in this case the white space extincts when A tends
to infinity. The second basic property of the Matern hard-core
point process is its "randomness". This randomness is rooted
in the purely random property [11] of the original Poisson
point process and the randomized dependent-thinning process
used in the construction of a Matern hard-core process (see
Section II.C). Without this randomness requirement we can
closely place non-overlapping circles into a regular cellular
structure, which gives an area fraction Xbell = 1T/ (2J3).

Unfortunately, both the above two requirements are common
in modem wireless networks: the spatial separation comes
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from self-interference constraints and the randomness comes
from the mobility of the nodes. This leads us to the following
remark: White space is not merely an artificial by-product of
spectrum licensing but to certain extent an inherent nature of
wireless communications.

A question followed naturally is: how can we "elimi­
nate/reduce" the white space to improve the spectrum uti­
lization? To this end, we assume an opportunistic cognitive
radio network coexisting with the primary network on a non­
interfering basis. If the cognitive radio tranmitters have the
same characteristics as the primary transmitters (i.e., the same
"grains"), their presences would be the same as increasing
the total primary transmitter density A. In this case the 1/4
bound on Xb still applies, which means that even in the
presence of a secondary network we still have relatively low
(spatial) spectrum utilization efficiency. From this discussion
we conclude the following remark: To effectively improve the
spectrum utilization, it is desirable to differentiate the trans­
mission characteristics of the secondary (cognitive) devices
from the primary transmitters.

In addition, we can image that if the cognitive radios are
able to adjust their transmit powers and thereby adaptively
change their coverage areas to fill in the spatial voids, the
overall spectrum utilization can be significantly improved.

B. Area fraction with black-grey-white propagation model

In this subsection we consider a more realistic propagation
model: the black-grey-white model. Again we will first work
on the area fraction Xbg of the black!grey spaces and then get
the white space area fraction as Xw = 1- Xbg. As illustrated in
Fig. 1, given the transmission range r and interfering range R
(R > r), the minimum distance between two non-interfering
primary transmitters is dmin = r + R. We consider a germ­
grain model 3 where the germs are the Matern hard-core
processes <I>th with a minimum separation of dmin and the
grains are identical disks of radius R. We aim to obtain the area
fraction Xbg of B. It turns out that (5) can no longer be used
to calculate the area fraction since grains can now overlap.
Nevertheless, we can still evaluate the lower and higher bounds
of Xbg as follows.

1) Lower bound of Xw: The lower bound of Xw corre­
sponds to the upper bound of Xbg. Neglecting the overlapping
effects of the grains of 3 and assuming every grain has an
"effective" area of 7fR2 , an (loose) upper bound of Xbg can
be obtained as

R2

x~ = {R+r)2 (l-exp{-A7r{R+r)2}) (8)

The lower bound X~ of Xw is then given by X~ = 1 - X~.
2) Upper bound ofXw: We consider two lower bounds of

Xbg. For the first one, we assume a new germ-grain process
IT I where the germs are still given by <I>th but the grains are
now disks of radius Rtr

. Clearly, the area fraction X~l of IT1

serves as a lower bound of Xbg. Since the grains of IT I fail to
overlap, from (6) we have

£1 1 - exp( -A7f(R + r)2) (9)
Xbg = 4 .

The second lower bound can be obtained with the assistance
of a new germ-grain process IT2 where the germs are now
stationary Poisson point processes with intensity Ath and the
grains remain as disks of radius R. In this case IT2 is reduced
to a boolean model [11]. From (7), the area fraction X~2 of
IT2 can be obtained as

xtg2 1-exp{-Ath7fR2} (10)

1 - exp { R2~ r 2 (1 - exp {-A7r(R + r)2}.) }

To prove that xf2 serves as a lower bound, we first introduce
9 .

another germ-grain process ITo where the germs are statIonary
Poisson point process with intensity A and the grains are
disks of radius R. It turns out that both 3 and IT2 can be
generated from ITo by thinning the germs. A dependent Matern
hard-core t-thinning [11] is used to generate 2 while an
independent p-thinning is used to generate IT2 . When a germ
is deleted, the corresponding effective grain (the area that is
not overlapped with other grains) is also deleted. The fact that
the Matern hard-core t-thinning tends to delete closely spaced
germs can be translated as that it tends to delete germs with
less effective grains. Moreover, both thinning operations have
the same retaining probability, i.e., statistically both thinning
operations delete the same number of germs. Consequently,
the overall effect would be that the p-thinning deletes more
effective grains from lIo compared with the Matern hard-core
t-thinning. It follows that the area faction of IT2 would be
smaller than that of 3, so xtg2 is a lower bound of Xbg.
It is easy to prove that xtg2 is a tighter lower bound, i.e.,
Xf2 > Xfl. Therefore, the upper bound of the white space

9 9 U £2
area fraction can be evaluated as Xw = 1 - Xbg .

C. Numerical results

In this sub-section, the bounds of Xw given by (8) and
(10) under the black-grey-white propagation models will be
evaluated numerically. In Fig. 2, we set the transmitter density
A = 0.001 and show the bounds from as functions of the
transmission range r with different R/r ratios. We see that Xw

decreases with increasing R/r ratios. This can be explained
intuitively: a larger R/r ratio means a wider protection zone
of the primary services and therefore the amount of white
spaces reduces. Moreover, Fig. 2 shows that white spaces
contribute to a significant portion of the total area. When
r ~ 00, the upper and lower bounds of Xw converges to

1 - exp ( - (R~:)2) and (R~:)'j, respectively. . .
In Fig. 3, we fixed R/r = 3 (as the prImary servIce

protection requirement) and show the bounds as functions of
the transmitter density A with different values of r. We can
see that given r, the area fraction of the white spaces reduces
gradually with increasing A. On the other hand, given A, the
white space area fraction reduces with increasing r. With large
values of r or A, the bounds converge as discussed previously.

V. CONCLUSIONS

In this paper, the spatial distributions of white spaces have
been studied using stochastic geometry. We have considered
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a primary network with homogeneous transmitters whose
distributions on a plane are modeled as stationary Poisson
point processes. We have modeled the areas of black/grey
spaces as random closed sets generated from germ-grain
models, where the germs (locations of active transmitter) are
Matern hard-core point processes and the grains are given
by two deterministic propagation models. With such a germ­
grain model, the area fractions of the white space have
been studied. We have found that a large amount of white
spaces exists, which can be explained by the randomness and
transmitter separation requirements of the primary network.
We conclude that white space is a natural by-product of many
wireless systems. To effectively exploit the white space, it is
desirable for a cognitive radio network to implement adaptive
technologies such as power control or topology-aware channel
contention protocols.
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