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Accurate and Efficient Simulation of
Multiple Uncorrelated Rayleigh Fading Waveforms
Cheng-Xiang Wang, Member, IEEE, Matthias Pätzold, Senior Member, IEEE,

and Dongfeng Yuan, Senior Member, IEEE

Abstract— Simulating wideband fading channels, multiple-
input multiple-output (MIMO) channels, and diversity-combined
fading channels often demands the generation of multiple
uncorrelated Rayleigh fading waveforms. In this letter, two
appropriate parameter computation methods, namely the method
of exact Doppler spread (MEDS) and Lp-norm method (LPNM),
for deterministic sum-of-sinusoids (SoS) channel simulators are
investigated to guarantee the uncorrelatedness between different
simulated Rayleigh fading processes. Numerical and simulation
results show that the resulting deterministic SoS channel sim-
ulator can accurately and efficiently reproduce all the desired
statistical properties of the reference model.

Index Terms— Multipath fading channels, Rayleigh processes,
sum-of-sinusoids channel simulator, statistics.

I. INTRODUCTION

THE generation of multiple uncorrelated Rayleigh fading
waveforms is often required for simulating wideband

fading channels, multiple-input multiple-output (MIMO) chan-
nels, and diversity-combined fading channels. It is therefore
of great significance to develop channel simulators capable
of accurately and efficiently simulating multiple uncorre-
lated Rayleigh fading processes. Jakes’ deterministic sum-of-
sinusoids (SoS) channel simulator [1] has extensively been
applied to the simulation of Rayleigh fading channels. In
order to generate multiple uncorrelated Rayleigh fading sig-
nals, Jakes [1] and other researchers [2]–[4] have investi-
gated different methods to parameterize the underlying deter-
ministic SoS channel simulators. Although Jakes’ simulator
[1] and its derivatives [2]–[4] are of deterministic nature,
which has the advantage of simulation efficiency, they still
retain some undesirable properties. For example, the cross-
correlation function (CCF) of any pair of underlying complex
processes is generally not zero for the models in [1]–[3], and
the drawback of the model in [4] is that the inphase and
quadrature components of each underlying complex process
have different autocorrelation functions (ACFs). To remedy the
drawbacks of the deterministic channel simulators in [1]–[4],
Zheng and Xiao [5], [6] reintroduced random parameters into
the employed sinusoids, resulting in non-ergodic stochastic

Manuscript received June 30, 2005; revised January 10, 2006; accepted
March 1, 2006. The associate editor coordinating the review of this paper
and approving it for publication was R. Murch.

C.-X. Wang is with the Joint Research Institute for Signal and Im-
age Processing, Heriot-Watt University, Edinburgh, UK (e-mail: cheng-
xiang.wang@hw.ac.uk).

M. Pätzold is with the Faculty of Engineering and Science, Agder Univer-
sity College, Grimstad, Norway (e-mail: matthias.paetzold@hia.no).

D. Yuan is with the School of Information Science & Engineering,
Shandong University, Jinan, P. R. China (e-mail: dfyuan@sdu.edu.cn).

Digital Object Identifier 10.1109/TWC.2007.05503.

SoS channel simulators. By averaging over a large number of
simulation trials, the developed stochastic channel simulators
in [5], [6] can approximate closely the desired statistical
properties. However, relatively high computational complexity
has to be paid for the channel simulators in [5], [6] due to their
non-ergodic stochastic nature.

In this letter, we go back to the deterministic SoS channel
modeling approach in order to keep the simulation effi-
ciency. The accuracy of its statistical properties is achieved
by carefully determining the simulation model parameters.
Two parameter computation methods, the method of exact
Doppler spread (MEDS) and Lp-norm method (LPNM) [7],
are revisited and the additional boundary conditions are in-
vestigated for producing multiple uncorrelated Rayleigh fading
waveforms. Our analysis reveals an inappropriate remark given
in [7, p. 284] for the MEDS concerning how to choose
the numbers of sinusoids in order to guarantee the complete
uncorrelatedness between different simulated processes. The
widely used statistical properties of the channel simulator are
studied in terms of the envelope probability density function
(PDF), the ACF and CCF of the quadrature components of
one complex process, the ACF of the complex process, and the
CCF of any pair of simulated complex processes. In addition,
the ACF of the squared envelope is, for the first time, derived
for the deterministic SoS channel simulator. This is a fourth-
order statistical quantity useful for estimating mobile speeds
in handoff schemes [6]. The numerical and simulation results
highlight the advantages of the presented channel simulator
over other forms of channel simulators in [1]–[6] in both
accurate reproduction of all the desired statistical properties
of the reference model and efficient implementation due to
the retained deterministic nature.

II. THE REFERENCE MODEL

Our aim is to generate L uncorrelated Rayleigh fad-
ing processes. It is well-known that a Rayleigh process is
formed by taking the absolute value of a zero-mean complex
Gaussian random process. Ideally, these L uncorrelated com-
plex Gaussian random processes should satisfy the following
criteria: 1) The inphase and quadrature components of each
complex process are zero-mean independent real Gaussian
random processes with identical ACFs; 2) The CCF of any
pair of complex Gaussian random processes must be zero.

Let us denote the desired �th (� = 1, 2, . . . ,L) Rayleigh
fading process by ζ�(t), which is given by

ζ�(t) = |μ�(t)| = |μ1,�(t) + jμ2,�(t)| . (1)
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Here, j =
√−1, μ�(t) is a zero-mean complex Gaussian

random process, μ1,�(t) and μ2,�(t) are uncorrelated real
Gaussian random processes with common variance σ2

0 . The
envelope PDF of ζ�(t) is the Rayleigh distribution [1]

pζ�
(x) =

x

σ2
0

exp(− x2

2σ2
0

) , x ≥ 0 . (2)

Adopting Clark’s two-dimensional isotropic scattering the-
ory [1], [8], the statistical properties of the reference model
are specified by the following ACFs and CCFs [9]:

rμi,�μi,�
(τ) = E{μi,�(t)μi,�(t + τ)}

= σ2
0J0(2πfmaxτ) (3)

rμ1,�μ2,�
(τ) = E{μ1,�(t)μ2,�(t + τ)} = 0 (4)

rμ2,�μ1,�
(τ) = E{μ2,�(t)μ1,�(t + τ)} = 0 (5)

rμ�μ�
(τ) = E{μ∗

� (t)μ�(t + τ)}
= 2σ2

0J0(2πfmaxτ) (6)

rμ�μλ
(τ) = E{μ∗

� (t)μλ(t + τ)} = 0 (7)

rζ2
�
ζ2

�
(τ) = E{ζ2

� (t)ζ2
� (t + τ)}

= 4σ4
0 + 4σ4

0J
2
0 (2πfmaxτ) (8)

for i = 1, 2 and �, λ = 1, 2, . . . ,L with � �= λ. Here, E{·}
refers to the statistical average operator, fmax is the maximum
Doppler frequency, and J0(·) denotes the zeroth-order Bessel
function of the first kind. The goal of our channel simulator
is then to reproduce the above desired statistical properties as
accurately and efficiently as possible.

III. THE DETERMINISTIC SOS SIMULATION MODEL

The central limit theorem justifies that a Gaussian random
process can be approximated by the superposition of a large
number of properly weighted sinusoids. This fact actually
serves as the foundation of SoS channel simulators. For our
simulation model, the �th (� = 1, 2, . . . ,L) Rayleigh fading
process is modeled as

ζ̃�(t) = |μ̃�(t)| = |μ̃1,�(t) + jμ̃2,�(t)| (9)

where

μ̃i,�(t) =
Ni,�∑
n=1

ci,n,� cos(2πfi,n,�t + θi,n,�) , i = 1, 2 . (10)

Here, Ni,� defines the number of sinusoids, mainly determin-
ing the realization expenditure and the accuracy of the result-
ing channel simulator. The gains ci,n,�, the discrete frequencies
fi,n,�, and the phases θi,n,� are real-valued parameters, which
are kept constant during simulation. Consequently, μ̃i,�(t) is a
deterministic function and the resulting channel simulator is of
deterministic feature. It follows that the statistical properties
of our deterministic SoS channel simulator must be calculated
by using time averages instead of statistical averages. The
envelope PDF p̃ζ�

(x) of ζ̃�(t) can be computed by [7]

p̃ζ�
(x) = x

∫ 2π

0

p̃μ1,�
(x cos θ) · p̃μ2,�

(x sin θ) dθ (11)

where

p̃μi,�
(x) = 2

∫ ∞

0

⎡
⎣Ni,�∏

n=1

J0(2πci,n,�ν)

⎤
⎦ cos(2πνx) dν,

i = 1, 2 . (12)

The time-averaged correlation functions of the simulation
model, corresponding to (3)–(8) of the reference model, can
be expressed as follows:

r̃μi,�μi,�
(τ)=

Ni,�∑
n=1

c2
i,n,�

2
cos(2πfi,n,� τ) (13)

r̃μ1,�μ2,�
(τ)=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

N1,�∑
n=1

N2,�∑
m=1

c1,n,�c2,m,�

2 cos(2πf1,n,� τ

−θ1,n,� ± θ2,m,�) , if f1,n,� = ±f2,m,�

0 , if f1,n,� �= ±f2,m,�

(14)

r̃μ2,�μ1,�
(τ)= r̃μ1,�μ2,�

(−τ) (15)

r̃μ�μ�
(τ)=

2∑
i=1

r̃μi,�μi,�
(τ)

+j [r̃μ1,�μ2,�
(τ) − r̃μ2,�μ1,�

(τ)] (16)

r̃μ�μλ
(τ)= r̃μ1,�μ1,λ

(τ) + r̃μ2,�μ2,λ
(τ)

+j [r̃μ1,�μ2,λ
(τ) − r̃μ2,�μ1,λ

(τ)] , � �= λ (17)

r̃ζ2
�
ζ2

�
(τ)=

2∑
i=1

⎧⎪⎨
⎪⎩

⎛
⎝Ni,�∑

n=1

c2
i,n,�

2

⎞
⎠

2

+2

⎡
⎣Ni,�∑

n=1

c2
i,n,�

2
cos(2πfi,n,� τ)

⎤
⎦

2

−
Ni,�∑
n=1

c4
i,n,�

8
[2 + cos(4πfi,n,� τ)]

⎫⎬
⎭

+
1
2

N1,�∑
n=1

c2
1,n,�

N2,�∑
m=1

c2
2,m,� . (18)

In (17), the CCFs r̃μi,�μk,λ
(τ) between μ̃i,�(t) and μ̃k,λ(t)

(i, k = 1, 2 and �, λ = 1, 2, . . . ,L with � �= λ) are given by

r̃μi,�μk,λ
(τ)=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Ni,�∑
n=1

Nk,λ∑
m=1

ci,n,�ck,m,λ

2 cos(2πfi,n,� τ

−θi,n,� ± θk,m,λ) , if fi,n,� = ±fk,m,λ

0 , if fi,n,� �= ±fk,m,λ .

(19)

In the Appendix, we have provided a brief outline for the
derivation of the squared envelope ACF r̃ζ2

�
ζ2

�
(τ) in (18). The

derivations of (13)–(17) are rather simple and the details are
omitted here for brevity.

From (14), (15), and (19), it is clear that different processes
μ̃i,�(t) and μ̃k,λ(t) (i, k = 1, 2 and �, λ = 1, 2, . . . ,L; i = k
and � = λ do not hold at the same time) are uncorrelated if

fi,n,� �= ±fk,m,λ (20)

holds for all n = 1, 2, . . . , Ni,� and m = 1, 2, . . . , Nk,λ. This
means that the discrete frequencies for different uncorrelated
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processes must be disjoint. The inequality (20) further allows
us to write r̃μ1,�μ2,�

(τ) = rμ1,�μ2,�
(τ) = 0, r̃μ2,�μ1,�

(τ) =
rμ2,�μ1,�

(τ) = 0, and r̃μ�μλ
(τ) = rμ�μλ

(τ) = 0. Subsequently,
two parameter computation methods (MEDS and LPNM) will
be revisited concerning how to fulfill the desired boundary
constraint (20).

A. MEDS

With the MEDS [7], the phases θi,n,� in (10) are simply
considered as the outcomes of a random generator uniformly
distributed over (0, 2π], while ci,n,� and fi,n,� are given by

ci,n,� = σ0

√
2

Ni,�
(21)

fi,n,� = fmax sin(Φi,n,�) (22)

respectively, where

Φi,n,� =
(2n − 1)π

4Ni,�
. (23)

We can easily show that the deterministic process μ̃i,�(t) in
(10) with the above chosen parameters has the desired mean
value 0 and variance σ2

0 . It follows from 1 ≤ n ≤ Ni,� that
π

4Ni,�
≤ Φi,n,� ≤ (2Ni,�−1)π

4Ni,�
holds. We may further write

0 < Φi,n,� < π/2 if Ni,� < ∞. Within this range, Equation
(22) clearly indicates that the discrete frequencies fi,n,� are
monotonously increasing values over the interval (0, fmax)
with the increase of n, i.e., 0 < fi,n,� < fi,n+1,� < fmax.
As a result, fi,n,� �= −fk,m,λ can always be satisfied. The
substitution of (22) into (20) tells us that fi,n,� �= fk,m,λ is
guaranteed if and only if Φi,n,� �= Φk,m,λ holds, which results
in

Ni,�

Nk,λ
�= 2n − 1

2m − 1
(24)

for n = 1, 2, . . . , Ni,�, m = 1, 2, . . . , Nk,λ, i, k = 1, 2, and
�, λ = 1, 2, . . . ,L (i = k and � = λ do not hold at the same
time). It is important to stress here that the expression (24)
points out a non-sufficient statement in [7, p. 284], where it is
claimed that the condition Ni,� �= Nk,λ is sufficient to ensure
fi,n,� �= fk,m,λ. From (24), we conclude that the ratio of Ni,�

to Nk,λ must be unequal to the ratio of two odd numbers.
Therefore, at maximum one odd value is allowed for all Ni,�

(i = 1, 2 and � = 1, 2, . . . ,L). To simulate L = 4 uncorrelated
Rayleigh fading channels by using the MEDS, an example set
of 8 values for the numbers of sinusoids Ni,� fulfilling (14)
is {8, 9, 10, 12, 16, 32, 64, 128}.

An obvious disadvantage with the above selection is
that very large values have to be chosen for Ni,�, which
increases greatly the complexity of our channel simulator,
when L > 4 uncorrelated Rayleigh processes are simulated.
Fortunately, this problem can be mitigated by the following
two steps. First, let us choose the numbers of sinusoids
Ni,� in such a way that (24) is not fulfilled for only few
pairs of (n, m). In this case, the CCFs of any pair of
processes are so small that they can be neglected in practice.
Also, large values of Ni,� can in principle be avoided.
Substituting (21) into (19), it is clear that the maximum
value of the CCF is r̃max

μi,�μk,λ
=

∑Ni,�

n=1

∑Nk,λ

m=1
ci,n,�ck,m,λ

2 =
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Fig. 1. The envelope PDFs of the Rayleigh model and the simulation model
by using the MEDS (σ2

0 = 1).

σ2
0P e

μi,�μk,λ
/
√

Ni,�Nk,λ , where P e
μi,�μk,λ

defines the number
of pairs of (n, m) fulfilling the equality fi,n,� = fk,m,λ.
For example, to simulate a 12-path (L = 12) wideband
channel, a possible set of 24 values for Ni,� is
{8, 9, 11, 13, 16, 17, 18, 19, 22, 23, 25, 26, 28, 29, 31, 32, 34, 36,
37, 41, 43, 47, 51, 53}. Our investigations show that the
maximum cross-correlation between μ̃i,�(t) and μ̃k,λ(t)
occurs when Ni,� = 18 and Nk,λ = 22. Then, fi,n,� = fk,m,λ

holds for P e
μi,�μk,λ

= 2 pairs of (n, m): (5, 6) and (14, 17).
As a result, r̃max

μi,�μk,λ
= 2/

√
18 × 22 ≈ 0.1005 with σ2

0 = 1.
The second step is to further replace fi,n,� by fi,n,� + ε when
fi,n,� = fk,m,λ holds. Here, ε is an infinitesimal quantity,
e.g., ε = 10−6, which guarantees that fi,n,� �= fk,m,λ and
fi,n−1,� < fi,n,� + ε < fi,n+1,� hold. With the resulting
new sets of discrete frequencies {fi,n,�}, the performance
degradation of the channel simulator can completely
be neglected and the uncorrelatedness between different
processes is confirmed.

By using (21), we can show that (11) approaches the desired
Rayleigh distribution (2) if Ni,� → ∞. As mentioned above,
the condition (20) guarantees that (14), (15), and (17) are
identical with (4), (5), and (7), respectively. It can also be
shown that the substitution of (21) and (22) into (13), (16),
and (18) results for Ni,� → ∞ in r̃μi,�μi,�

(τ) → rμi,�μi,�
(τ),

r̃μ�μ�
(τ) → rμ�μ�

(τ), and r̃ζ2
�
ζ2

�
(τ) → rζ2

�
ζ2

�
(τ), respectively.

Fig. 1 impressively illustrates the excellent agreement between
the Rayleigh distribution in (1) with σ2

0 = 1 and the approxi-
mate envelope PDF p̃ζ�

(x) in (11) with N1,� = 9 and N2,� =
10. The corresponding simulated envelope PDF obtained from
the output of the channel simulator is also presented in the
figure to validate the analytical result. Fig. 2 shows the ACF
r̃μi,�μi,�

(τ) with Ni,� = 10 and the CCF r̃μ1,�μ2,�
(τ) with

N1,� = 9 and N2,� = 10 by using the MEDS. Again, the
simulation results are provided for reasons of verification.
The ACF rμi,�μi,�

(τ) and CCF rμ1,�μ2,�
(τ) of the reference

model are also demonstrated in the figure for comparison
purposes. Clearly, r̃μ1,�μ2,�

(τ) = rμ1,�μ2,�
(τ) = 0 holds for all

τ . The ACF r̃μi,�μi,�
(τ) matches almost perfectly the desired
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Fig. 2. The ACFs and CCFs of the quadrature components of the reference
model and the simulation model by using the MEDS (σ2

0 = 1).

one rμi,�μi,�
(τ) if the normalized time delay fmaxτ is within

the interval [0, Ni,�/2], which includes Ni,� zero-crossings
of rμi,�μi,�

(τ). In case that fmaxτ > Ni,�/2, r̃μi,�μi,�
(τ) and

rμi,�μi,�
(τ) will diverge gradually and never converge again.

Clearly, with the increase of Ni,�, a better approximation
can be achieved over larger time delays. It is also shown in
Fig. 3 that the ACFs of the complex envelope of the reference
model and simulation model are very close to each other
when fmaxτ is located in the interval [0, min{N1,�, N2,�}/2].
For N1,� = 9 and N2,� = 10, Fig. 4 indicates that the
squared envelope ACF of the simulator gives a fairly good
approximation to the desired one if fmaxτ is within the
interval [0, min{N1,�, N2,�}/2]. It is interesting to observe that
r̃ζ2

�
ζ2

�
(τ) < rζ2

�
ζ2

�
(τ) always holds within this interval. For

example, at the origin τ = 0, r̃ζ2
�
ζ2

�
(0) = σ4

0(8− 3
2N1,�

− 3
2N2,�

)
is always smaller than rζ2

�
ζ2

�
(0) = 8σ4

0 for finite N1,� and
N2,� . The simulation result obtained by using N1,� = 159
and N2,� = 160 clearly demonstrates that r̃ζ2

�
ζ2

�
(τ) will tend to

rζ2
�
ζ2

�
(τ) when both N1,� and N2,� are sufficiently large. Due to

the fact that short time delays, e.g., fmaxτ ≤ 0.3, are of more
interest for most communication systems [10], the MEDS
with small numbers of sinusoids Ni,� is indeed an excellent
method in terms of the above interested correlation properties.
In Fig. 5, we vividly present two uncorrelated simulated fading
envelopes by using the MEDS with σ2

0 = 1, fmax = 91 Hz,
N1,1 = 9, N2,1 = 10, N1,2 = 8, and N2,2 = 12.

B. LPNM

By using the LPNM, ci,n,� and θi,n,� in (11) are the same
as those given for the MEDS, while the discrete frequencies
fi,n,� are determined by minimizing the following error norm

E� =

⎧⎨
⎩ W1

τmax1

τmax1∫
0

|rμ1,�μ1,�
(τ) − r̃μ1,�μ1,�

(τ)|p1dτ

⎫⎬
⎭

1/p1

+

⎧⎨
⎩ W2

τmax2

τmax2∫
0

|rμ2,�μ2,�
(τ) − r̃μ2,�μ2,�

(τ)|p2dτ

⎫⎬
⎭

1/p2
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Fig. 3. The ACFs of the complex envelope of the reference model and the
simulation model by using the MEDS (σ2
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0 1 2 3 4 5 6 7 8
3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

Normalized time delay, fmaxτ

A
C

F 
of

 th
e 

sq
ua

re
d 

en
ve

lo
pe

Reference model
Simulation model (N1,l=9, N2,l=10)
Simulation (N1,l=9, N2,l=10)
Simulation model (N1,l=159, N2,l=160)
Simulation (N1,l=159, N2,l=160)
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+

⎧⎨
⎩ W3

τmax2

τmax2∫
0

|rζ2
�
ζ2

�
(τ) − r̃ζ2

�
ζ2

�
(τ)|p2dτ

⎫⎬
⎭

1/p2

,

p1, p2 = 1, 2, . . . (25)

where τmax1 = N1,�/(2fmax) and τmax2 = N2,�/(2fmax)
define the maximum time delays up to which the approxi-
mation to the desired ACFs is of interest. The appropriate
weighting functions W1, W2, and W3 have to be chosen em-
pirically, e.g., one can use the scaled versions of rμ1,�μ1,�

(τ),
rμ2,�μ2,�

(τ), and rζ2
�
ζ2

�
(τ), respectively. The optimized sets

of discrete frequencies f1,n,� and f2,n,� will be attained by
applying a numerical optimization algorithm. It is important to
mention that the global minimum of E� cannot be guaranteed
to be found by any optimization algorithm. In general, a
local minimum of E� is obtained. The advantage we may
take from this property is that various local minima lead to
various disjoint sets of discrete frequencies fi,n,�. Therefore,
we can easily satisfy the inequality (20) by taking one or



IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 6, NO. 3, MARCH 2007 837

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
−40

−35

−30

−25

−20

−15

−10

−5

0

5

10

15

Time, t (s)

R
ec

ei
ve

d 
en

ve
lo

pe
 (d

B
)

Process 1
Process 2

Fig. 5. Uncorrelated simulated fading envelopes by using the MEDS (σ2
0 =

1, fmax = 91 Hz, N1,1 = 9, N2,1 = 10, N1,2 = 8, N2,2 = 12).

a combination of the following four measures: 1) choosing
the numbers of sinusoids Ni,� such that the relation (24) is
fulfilled, 2) minimizing (25) by using different values of p1

and p2, 3) minimizing (25) with different values of τmax1 and
τmax2 , and 4) carrying out the optimization by using different
starting values for fi,n,�. Jakes’ method [1] and the MEDS can,
e.g., be employed here. It should be stressed that the LPNM
controlled by any of the last three measures can be used to
design L uncorrelated waveforms even when Ni,� = Nk,λ

holds for i, k = 1, 2 and �, λ = 1, 2, . . . ,L.
Since the expression (21) applies to both the MEDS and

the LPNM, the envelope PDF p̃ζ�
(x) [see (11)] by using the

LPNM is identical to the result shown in Fig. 1 with the
same parameters. In Fig. 6, the optimized squared envelope
ACF r̃ζ2

�
ζ2

�
(τ) with N1,� = 9 and N2,� = 10 is compared

with the desired one rζ2
�
ζ2

�
(τ) and the approximate one by

using the MEDS. As starting values for the optimization of
the discrete frequencies fi,n,�, the expression (22) determined
by the MEDS was used. Also, p1 = p2 = 2 were selected. We
observe that the approximate squared envelope ACF by using
the LPNM nearly coincides with that by using the MEDS
when fmaxτ is located in the interval [0, min{N1,�, N2,�}/2].
By using the same parameters, the optimized ACFs r̃μi,�μi,�

(τ)
and r̃μ�μ�

(τ) also show quite similar results to those obtained
by using the MEDS. For shortness, they are not shown here.

In short, both the MEDS and the LPNM can provide similar
good approximations to the desired statistical properties of the
reference model. In order to guarantee the uncorrelatedness
between different simulated processes, the LPNM is more
flexible than the MEDS, but one has to pay higher numerical
computation expenditure. Due to the fact that the parameters
fi,n,� determined by the LPNM are not available in a closed-
form expression, it is impossible to evaluate the convergency
of the relevant correlation functions of the simulation model
to those of the reference model when the numbers of sinusoids
tend to infinity. Just the reverse holds for the MEDS.

Compared with the non-ergodic stochastic SoS channel
simulators in [5], [6], the presented deterministic SoS chan-
nel simulator with the MEDS and LPNM has much better
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Fig. 6. The ACFs of the squared envelope of the reference model and the
simulation model by using the MEDS and the LPNM (σ2

0 = 1).

simulation efficiency since the calculation of its statistical
properties does not need the average of a number of random
trials. With the same numbers of sinusoids, our deterministic
channel simulator has similar performance to that of the
stochastic simulators in [5], [6] in terms of the amplitude PDF.
The performance of the deterministic channel simulator is
comparable to or even better than that of the stochastic channel
simulators in [5], [6] for the approximation of the ACFs inside
the specified time delay ranges, e.g., fmaxτ ∈ [0, Ni,�/2] for
rμi,�μi,�

(τ). Outside the specified time delay ranges, which
may not be relevant for communication systems [10], the
stochastic channel simulators in [5], [6] provide much better
approximations to the desired ACFs than our deterministic
channel simulator. Furthermore, the accuracy of the statistic
properties of the non-ergodic stochastic channel simulators can
be improved by increasing either the numbers of sinusoids or
the number of random trials to be averaged. On the other
hand, the performance of the presented deterministic channel
simulator can only be improved by increasing the numbers of
sinusoids.

It is well known that multiple cross-correlated processes
can be obtained by using a linear combination of uncorrelated
processes [9], [11]. As shown in [11], the above presented
deterministic channel simulator can easily be extended to
the generation of multiple cross-correlated Rayleigh fading
processes for simulating more realistic MIMO channels.

IV. CONCLUSION

In this letter, two parameter computation methods for de-
terministic SoS channel simulators are presented to generate
multiple uncorrelated Rayleigh fading processes, which are
useful for the modeling of wideband, MIMO, and diversity-
combined multipath fading channels. Compared with the
MEDS, the LPNM has higher numerical computation expen-
diture. In order to guarantee the uncorrelatedness between
different simulated fading processes, the LPNM is a more
flexible method than the MEDS. In both cases, the statistical
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properties of the simulated processes match very closely the
desired properties of the reference model.

APPENDIX I
DERIVATION OF (18)

In this appendix, we derive the time-averaged ACF r̃ζ2
�
ζ2

�
(τ)

of the squared envelope for the deterministic simulation model
in (9). We have

r̃ζ2
�
ζ2

�
(τ) = lim

T→∞
1

2T

T∫
−T

ζ̃2
� (t)ζ̃2

� (t + τ)dt

= lim
T→∞

1
2T

T∫
−T

[μ̃2
1,�(t) + μ̃2

2,�(t)]

· [μ̃2
1,�(t + τ) + μ̃2

2,�(t + τ)]dt

= r̃μ2
1,�

μ2
1,�

(τ) + r̃μ2
2,�

μ2
2,�

(τ)

+r̃μ2
1,�

μ2
2,�

(τ) + r̃μ2
2,�

μ2
1,�

(τ) . (26)

For the above equation, we first compute r̃μ2
1,�

μ2
1,�

(τ). The
remaining terms on the right hand side of (26) can be
computed in a similar manner. Then,

r̃μ2
1,�

μ2
1,�

(τ)= lim
T→∞

1
2T

T∫
−T

μ̃2
1,�(t)μ̃

2
1,�(t + τ)dt

= lim
T→∞

1
2T

T∫
−T

N1,�∑
n=1

N1,�∑
m=1

N1,�∑
p=1

N1,�∑
q=1

c1,n,�c1,m,�

· c1,p,�c1,q,� cos(2πf1,n,�t + θ1,n,�)
· cos(2πf1,m,�t + θ1,m,�)
· cos [2πf1,p,�(t + τ) + θ1,p,�]
· cos [2πf1,q,�(t + τ) + θ1,q,�] dt . (27)

In (27), all terms are zero except the following four terms
with: 1) n = m = p = q; 2) n = m, p = q, n �= p; 3) n = p,
m = q, n �= m; 4) n = q, m = p, n �= m. Next, each of
these four terms is calculated individually to derive the overall
expression of (27).

For Term 1 (n = m = p = q), we have

lim
T→∞

1
2T

T∫
−T

N1,�∑
n=1

c4
1,n,� cos2(2πf1,n,�t + θ1,n,�)

· cos2 [2πf1,n,�(t + τ) + θ1,n,�] dt

= lim
T→∞

1
2T

T∫
−T

N1,�∑
n=1

c4
1,n,�

4
[1 + cos(4πf1,n,�t + 2θ1,n,�)]

· {1 + cos [4πf1,n,�(t + τ) + 2θ1,n,�]} dt

=
N1,�∑
n=1

c4
1,n,�

4

[
1 +

1
2

cos(4πf1,n,�τ)
]

. (28)

For Term 2 (n = m, p = q, n �= p), we have

lim
T→∞

1
2T

T∫
−T

N1,�∑
n=1

c2
1,n,� cos2(2πf1,n,�t + θ1,n,�)

·
N1,�∑

p=1, p�=n

c2
1,p,� cos2 [2πf1,p,�(t + τ) + θ1,p,�] dt

=
N1,�∑
n=1

c2
1,n,�

2

N1,�∑
p=1, p�=n

c2
1,p,�

2

=

⎛
⎝N1,�∑

n=1

c2
1,n,�

2

⎞
⎠

2

−
N1,�∑
n=1

c4
1,n,�

4
. (29)

For Term 3 (n = p, m = q, n �= m), we have

lim
T→∞

1
2T

T∫
−T

N1,�∑
n=1

c2
1,n,� cos(2πf1,n,�t + θ1,n,�)

· cos[2πf1,n,�(t + τ) + θ1,n,�]

·
N1,�∑

m=1, m �=n

c2
1,m,� cos(2πf1,m,�t + θ1,m,�)

· cos [2πf1,m,�(t + τ) + θ1,m,�] dt

=
N1,�∑
n=1

c2
1,n,�

2
cos(2πf1,n,�τ)

·
N1,�∑

m=1, m �=n

c2
1,m,�

2
cos(2πf1,m,�τ)

=

⎡
⎣N1,�∑

n=1

c2
1,n,�

2
cos(2πf1,n,�τ)

⎤
⎦

2

· −
N1,�∑
n=1

c4
1,n,�

4
cos2(2πf1,n,�τ) . (30)

It can be shown that Term 4 (n = q, m = p, n �= m) is
equal to Term 3. Hence,

r̃μ2
1,�

μ2
1,�

(τ) =

⎛
⎝N1,�∑

n=1

c2
1,n,�

2

⎞
⎠

2

+2

⎡
⎣N1,�∑

n=1

c2
1,n,�

2
cos(2πf1,n,�τ)

⎤
⎦

2

−
N1,�∑
n=1

c4
1,n,�

8
[2 + cos(4πf1,n,�τ)]. (31)

By analogy, we can show that

r̃μ2
2,�

μ2
2,�

(τ) =

⎛
⎝N2,�∑

n=1

c2
2,n,�

2

⎞
⎠

2

+2

⎡
⎣N2,�∑

n=1

c2
2,n,�

2
cos(2πf2,n,�τ)

⎤
⎦

2
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−
N2,�∑
n=1

c4
2,n,�

8
[2 + cos(4πf2,n,�τ)] (32)

r̃μ2
1,�

μ2
2,�

(τ) =
N1,�∑
n=1

c2
1,n,�

2

N2,�∑
m=1

c2
2,m,�

2
(33)

r̃μ2
2,�

μ2
1,�

(τ) =
N1,�∑
n=1

c2
1,n,�

2

N2,�∑
m=1

c2
2,m,�

2
. (34)

The substitution of (31)–(34) into (26) gives the final result
of r̃ζ2

�
ζ2

�
(τ), as shown in (18).
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