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A New Class of Generative Models for Burst Error
Characterization in Digital Wireless Channels
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Abstract— Accurate and efficient generative models are sig-
nificant for the design and performance evaluation of wireless
communication protocols as well as error control schemes. In this
paper, deterministic processes are utilized to derive a new class of
hard and soft generative models for simulation of digital wireless
channels with hard and soft decision outputs, respectively. The
proposed deterministic process based generative models (DP-
BGMs) are all based on a properly parameterized and sampled
deterministic process followed by a threshold detector and two
parallel mappers. The target hard and soft error sequences are
provided by computer simulations of uncoded enhanced general
packet radio service (EGPRS) systems with typical urban (TU)
and rural area (RA) channels. Simulation results indicate that
the proposed DPBGMs enable us to approximate very closely
all the interested burst error statistics of the target hard and
soft error sequences. The validity of the suggested DPBGMs is
further confirmed by the excellent match of the simulated frame
error rates (FERs) and residual bit error rates (RBERs) of coded
EGPRS systems obtained from the target and generated error
sequences.

Index Terms— Hard and soft generative models, error models,
digital wireless channels, deterministic processes, EGPRS sys-
tems.

I. INTRODUCTION

W IRELESS propagation channels can roughly be clas-
sified as two major categories. The first category is

analog or physical channels, where the parameters of interest
are the received signal strength, the noise and/or interference
power, the mobile speed, etc. Channel models for physical
channels place emphasis on describing the fading character-
istics of the received signal. Such models, e.g., the well-
known Rayleigh and Rice models [1], are important for the
design, parameter optimization, and test of the transmitter
and receiver of wireless communication systems. The second
category is digital channels, where we are interested in the
number and distribution of error events in a sequence of
bits or packets. A digital (time-discrete) channel comprises
the complete transmission chain including the transmitter, the
physical channel, and the receiver in the complex baseband.
Errors encountered in digital wireless channels are not inde-
pendent but occur in bursts or clusters. Channel models for
digital channels are called error models [2], [3], which aim
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at describing the statistical properties of the underlying bursty
error sequences. Error models have wide applications to the
design and performance evaluation of error control schemes
[3] as well as high layer wireless communication protocols
[4], [5].

Error models are either descriptive [2] or generative [3]. A
descriptive model analyzes the statistical behavior of target
error sequences obtained directly from a real digital channel
or a computer simulation of the overall communication link.
A generative model specifies a mechanism that generates error
sequences statistically similar to the target error sequences [3].
Compared with a descriptive model, the main advantage of a
generative model is that it can greatly reduce the computa-
tional effort for generating long error sequences and therefore
speed up simulations. In this paper, descriptive models are
considered as our reference models, while generative models
are considered as simulation models.

An error sequence can be either a hard (binary) error
sequence or a soft one, depending on whether the outputs of a
digital channel are based on hard decisions or soft decisions.
Consequently, one can have hard generative models and soft
generative models, which generate hard error sequences and
soft error sequences, respectively. In the literature, five classes
of hard generative models have been proposed. The first class
is based on finite [3], [6]–[14] or infinite [3] state Markov
chains. Gilbert [6] originally proposed a two-state Markov
model. It generates in one state (good state) a hard error-free
sequence and in the other one (bad state) a sequence of errors.
Elliot [7] modified Gilbert’s model in such a way that errors
can also occur in the good state with a small probability. The
disadvantage of a two-state Markov model is its limited capa-
bility to reproduce the desired burst error statistics. One way
to overcome this problem is to enlarge the number of states.
Fritchman [8] proposed Markov models with a finite number
K of states, which are then partitioned into two groups. One
group consists of j error-free states, while the other group has
K−j error states. Simplified Fritchman’s models (SFMs) with
only one error state have received wide applications [9]–[13].
For example, SFMs were applied to describe the statistical
properties of HF channels in [9], VHF channels in [10], UHF
channels in [11], and indoor radio channels in [12], [13].
Finite state Markov models also include the so-called bipartite
models [14]. The Markov chain used in a bipartite model forms
a bipartite graph. Another important class of hard generative
models are hidden Markov models (HMMs) [12], [13], [15],
[16], which have to use a high number of HMM states in order
to provide good fittings to the desired burst error statistics.
A higher state Markov model enhances the parametrization
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problems and makes the subsequent performance analysis of
high layer protocols increasingly difficult [5]. Furthermore,
HMMs lack a direct intuition between the channel behavior
and the underlying Markov chain.

Recently, three other classes of hard generative models [13],
[16]–[23] were presented. The underlying error generation
mechanisms, which are completely different from Markov
chains, are based on stochastic context-free grammars [13],
chaos equations [16]-[19], and sum-of-sinusoids deterministic
processes [20]–[23]. Stochastic context-free grammar based
hard generative models are limited to model hard error se-
quences having the bell-shaped error-density behavior [13].
Chaos equation based hard generative models [16], [17] failed
to approximate some important burst error statistics, e.g., the
block error probability distribution, with high accuracy. On
the other hand, the new class of deterministic process based
generative models (DPBGMs) [20]–[23] was demonstrated to
be a promising alternative to Markov models. In particular,
the DPBGM in [23] shows much better performance than
the DPBGMs in [20]–[22] by accurately modeling all the
interested burst error statistics of the underlying hard error
sequences. The employed target hard error sequences in [20]–
[23] were obtained by computer simulations of postulated
transmission systems, rather than realistic wireless communi-
cation systems. Moreover, the resulting hard error sequences
generated from the developed DPBGMs in [20]–[23] were not
further applied to performance simulations of error control
schemes and compared with the target hard error sequences.
This implies that the applicability of the DPBGMs in [20]–
[23] to the performance evaluation of coding systems was not
validated.

All the above mentioned hard generative models [3], [6]–
[23] can only simulate the occurrence of binary errors. It is
widely accepted that better performance of channel coding
schemes can be achieved by using soft decision decoding
algorithms. In this framework, the hard generative models
become useless. In the literature, only few of soft generative
models were found for the simulation of digital wireless
channels with soft decision outputs. They are based on either
hidden Markov chains [24]–[30] or chaos equations [29],
[30]. For generating soft error sequences, the HMM building
becomes much more complex since it needs to significantly
increase the number of HMM states [25]. Chaos equation
based soft generative models still result in relatively poor
fittings to the desired burst error statistics [29], [30].

The aim of this paper is twofold. First, we will follow the
line of [23] and develop an improved hard generative model
based on deterministic processes for realistic enhanced general
packet radio service (EGPRS) systems. Uncoded EGPRS
systems with hard decision outputs are adopted to provide
target hard error sequences. Second, we will show that the
proposed DPBGM is also capable of generating soft error
sequences by slightly modifying the design procedure. In this
case, uncoded EGPRS systems with soft decision outputs are
used as reference transmission systems. It is shown that the
proposed DPBGMs can provide excellent approximation to
the desired burst error statistics of the underlying descriptive
models. The verification made by performance simulations of

coded EGPRS systems with hard and soft decision decoding
algorithms further confirm the reliability of the suggested
models.

The paper is organized as follows. Section II briefly intro-
duces the terms and interested burst error statistics for both
hard and soft error sequences. A general design procedure of
novel hard and soft generative models based on deterministic
processes is addressed in Section III. Section IV presents the
adopted EGPRS systems and the resulting hard and soft error
sequences. In this section, the burst error statistics of the under-
lying descriptive models and the proposed generative models
are also compared. Section V demonstrates the simulated
frame error rates (FERs) and residual bit error rates (RBERs)
of coded EGPRS systems obtained from the descriptive models
and generative models. Finally, the conclusions are drawn in
Section VI.

II. BURST ERROR STATISTICS

In the literature, different definitions exist for some terms
describing bursty error sequences. For instance, the definition
of a gap used in [9], [10] differs from that used in [3],
[16]. For the sake of clarity, let us first introduce the terms
and relevant burst error statistics we use in this paper to
characterize hard and soft error sequences. The definitions of
the terms were chosen in such a way that they are convenient
for the development of DPBGMs.

A. Burst Error Statistics for Hard Error Sequences

A hard error sequence is often represented by a binary
sequence of ones and zeros, with a “1” denoting an error bit
and a “0” a correctly received bit. A gap is defined as a string
of consecutive zeros between two ones, having a length equal
to the number of zeros [9], [10]. An error cluster is a region
where the errors occur consecutively and has a length equal
to the number of ones [8]. An error-free burst is defined as
an all-zero sequence with a length of at least η bits, where η
is a positive integer [12], [14]. Compared to a gap, an error-
free burst has the minimum length of η and is not necessarily
located between two errors. An error burst is a sequence of
zeros and ones starting and ending with a “1”, and separated
from neighboring error bursts by error-free bursts [12], [14]. It
should be observed that the minimum length of an error burst
is 1 and the number of consecutive error-free bits within an
error burst is less than η. Hence, the local error density inside
an error burst is greater than 1/η. To make the above concepts
easily understood, we show in Fig. 1 an extract from a hard
error sequence. Only in this figure, “G”, “EC”, “EFB”, and
“EB” are used to denote a gap, an error cluster, an error-free
burst, and an error burst, respectively. In addition, η = 4 holds
as an example here.

Regarding hard error sequences, we are interested in the
following burst error statistics:

1) G(mg): the gap distribution (GD), which is defined as the
cumulative distribution function (CDF) of gap lengths mg

[9].
2) P (0m0/1): the error-free run distribution (EFRD), which

is the probability that an error is followed by at least
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Fig. 1. An extract from a hard error sequence with η = 4 as an example.

m0 error-free bits [8]. The EFRD can be calculated from
the GD [9]. Obviously, P (0m0/1) is a monotonically
decreasing function of m0 such that P (00/1) = 1 and
P (0m0/1) → 0 as m0 → ∞.

3) P (1mc/0): the error cluster distribution (ECD), which is
the probability that a correct bit is followed by mc or
more consecutive bits in error [8].

4) PEB(me): the error burst distribution (EBD), which is
the CDF of error burst lengths me.

5) PEFB(mē): the error-free burst distribution (EFBD),
which is the CDF of error-free burst lengths mē.

6) P (m,n): the block error probability distribution (BEPD),
which is the probability that a block of n bits contain at
least m errors. This quantity is important for determining
the performance of error-correcting schemes [10].

7) ρ(∆k): the bit error correlation function (BECF), which
is the conditional probability that the ∆kth bit following
an error bit is also in error. The BECF represents the
burstiness of the channel and is useful for the design of
bit interleavers [2], [3].

B. Burst Error Statistics for Soft Error Sequences

For digital channels with M -bit soft decision outputs, a
soft error sequence is in general represented by a sequence
of integer numbers ranging from −2M−1 to 2M−1 − 1, where
M is a positive integer. A negative integer indicates an error
bit, while a nonnegative integer stands for a correctly received
bit. The absolute value of an integer shows the reliability
of the decision. Fig. 2 shows an extract from a soft error
sequence. Here, M = 4 holds as an example and therefore,
the integers are located in the interval [-8, 7]. In order to
make statistical assessments of soft error sequences, some
new terms and relevant burst error statistics pertaining to
soft decision outputs have to be introduced. For reasons of
consistency, we will consider the following terms for soft
error sequences analogous to the definitions used for hard error
sequences. A soft gap (SG) is defined as a string of consecutive
nonnegative integers between two negative integers, having a
length equal to the number of nonnegative integers. A soft
error cluster (SEC) is a region where the negative integers
occur consecutively and has a length equal to the number of
negative integers. A soft error-free burst (SEFB) is defined as
a sequence of nonnegative integers with a length of at least η
bits, where η is a positive integer. Again, η is set to be 4 as
an example in Fig. 2. A soft error burst (SEB) is a sequence
of integers beginning and ending with a negative integer, and
separated from neighboring SEBs by SEFBs. It is important
to mention that a hard error sequence can be regarded as a
quantized version of a soft error sequence, i.e., M = 1. This

L 5   - 3   4   2   7   - 8   - 6   3   4   6   2   - 5   7   2   6   3   5   - 1   4 L
S E B S E F B S E F BS E B

S E C S E CS G S GS E C S GS E C

Fig. 2. An extract from a soft error sequence with η = 4 as an example.

is also obvious by comparing Fig. 1 and Fig. 2. If we replace
all the nonnegative integers by zeros and negative integers by
ones in Fig. 2, then Fig. 2 will be reduced to Fig. 1.

In relevance to soft error sequences, the following burst
error statistics will be studied:

1) G(mg): the soft gap distribution (SGD), which is defined
as the CDF of soft gap lengths mg .

2) P (m+): the soft EFRD (SEFRD), which is the proba-
bility that a negative integer is followed by at least m+

nonnegative integers.
3) P (m−): the soft ECD (SECD), which is the probability

that a nonnegative integer is followed by m− or more
negative integers.

4) PEB(me): the soft EBD (SEBD), which is the CDF of
soft error burst lengths me.

5) PEFB(mē): the soft EFBD (SEFBD), which is the CDF
of soft error-free burst lengths mē.

6) P (m,n): the soft BEPD (SBEPD), which is the probabil-
ity that a block of n integers contain at least m negative
integers.

7) P (S): the soft decision symbol distribution (SDSD),
which is the CDF of soft decision symbols S ∈
[−2M−1, 2M−1 − 1].

It is worth stressing here that the SGD, SEFRD, SECD,
SEBD, SEFBD, and SBEPD of soft error sequences will
exactly be identical to the GD, EFRD, ECD, EBD, EFBD, and
BEPD of hard error sequences, respectively, if the underlying
hard error sequence is a corresponding quantized version
of the soft error sequence. This is due to the fact that we
have employed the consistent definitions of the terms and the
above mentioned burst error statistics for hard and soft error
sequences. For notational brevity, we use G(mg), PEB(me),
PEFB(mē), and P (m,n) to represent (soft) GD, (soft) EBD,
(soft) EFBD, and (soft) BEPD, respectively.

From the definitions of the terms, it is clear that a hard
(soft) error sequence can be considered as the combination
of consecutive (soft) error bursts and (soft) error-free bursts,
while (soft) error bursts can further be subdivided into (soft)
error clusters and (soft) gaps. To avoid a bit-by-bit processing,
a hard (soft) error sequence can concisely be represented by
listing the successive (soft) error burst lengths and (soft) error-
free burst lengths. This results in a (soft) error burst recorder
EBrec and a (soft) error-free burst recorder EFBrec. Here,
EBrec is a vector which counts successive (soft) error burst
lengths, while EFBrec records successive (soft) error-free
burst lengths. Let us denote the minimum value as mB1 and
the maximum value as mB2 in EBrec. This means that the
lengths me of (soft) error bursts satisfy mB1 ≤ me ≤ mB2.
By analogy, the minimum value and the maximum value in
EFBrec are denoted as mB̄1 and mB̄2, respectively. For the
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convenience of developing the DPBGMs in Section III, the
following quantities are defined:

1) Nt: the total length of the target hard (soft) error se-
quence.

2) NEB : the total number of (soft) error bursts, which equals
the number of entries in EBrec.

3) NEFB : the total number of (soft) error-free bursts, which
equals the number of entries in EFBrec.

4) NEB(me): the number of (soft) error bursts of length
me in EBrec. Apparently,

∑mB2

me=mB1
NEB(me) = NEB

holds. The (soft) EBD PEB(me) can then be calculated
by PEB(me) = 1

NEB

∑me

x=mB1
NEB(x).

5) NEFB(mē): the number of (soft) error-free
bursts of length mē in EFBrec. Similarly,∑mB̄2

mē=mB̄1
NEFB(mē) = NEFB holds. The (soft)

EFBD PEFB(mē) is given by PEFB(mē) =
1

NEF B

∑mē

x=mB̄1
NEFB(x).

6) RB : the ratio of the mean value MEB of (soft) error burst
lengths to the mean value MEFB of (soft) error-free burst
lengths, i.e., RB = MEB/MEFB .

In relevance to a hard error sequence, the configuration
of error-free bursts are obvious from the entries of EFBrec,
since the length of an error-free burst defines the number of
consecutive zeros. On the other hand, the entries of EBrec do
not provide a clear configuration of corresponding error bursts
because an error burst consists of possibly mixed zeros and
ones. It is necessary to further define the following vectors:
• ECGi: a vector which lists successive error cluster

lengths and gap lengths corresponding to each entry
of EBrec. Clearly, i = 1, 2, . . . ,NEB . Note that each
vector ECGi has an odd number of entries, with error
cluster lengths as odd entries and gap lengths as even
entries.

Due to the specific nature of a soft error sequence, two types
of vectors need to be defined instead of the above vectors
ECGi.
• EBSi: a vector which records soft decision symbols

corresponding to each entry of EBrec. Here, i =
1, 2, . . . ,NEB . The vector EBSi indicates the config-
uration of the corresponding soft error burst.

• EFBSj : a vector which records soft decision symbols
corresponding to each entry of EFBrec. Similarly,
j = 1, 2, . . . ,NEFB .

III. THE NOVEL GENERATIVE MODELS BASED ON
DETERMINISTIC PROCESSES

It is well established that the statistics of burst errors can be
estimated from the second order statistics of fading envelope
processes. This indicates the possibility of developing gener-
ative models by using fading processes. Deterministic fading
processes, based on the principle of Rice’s sum-of-sinusoids
[31], [32], have widely been employed as physical channel
simulators [1], [33], [34]. It has been shown in [20]–[23] that
deterministic processes can also be utilized as a proper error
generation mechanism for the simulation of digital wireless

channels with hard decision outputs. In this section, we will
develop a general design procedure of generating hard (soft)
error sequences based on deterministic processes.

It is natural to relate the generation of (soft) error bursts
and (soft) error-free bursts to fading intervals and inter-
fade intervals of a fading process, respectively. The key idea
behind the proposed hard (soft) generative model is to derive
directly from a deterministic process a (soft) error burst
length generator and a (soft) error-free burst length generator.
The employed deterministic process ζ̃(t) must be properly
parameterized and sampled with a certain sampling interval
TA. A threshold detector with a chosen threshold rth then
follows after the sampled deterministic process ζ̃(kTA), where
k is a nonnegative integer. During the simulation, the level
of the deterministic process will vary and cross the given
threshold rth from time to time. If the level of ζ̃(kTA) is
above rth, (soft) error-free bursts are supposed to be produced
at the model’s output. The lengths of the generated (soft) error-
free bursts equal the numbers of samples in the corresponding
inter-fade intervals of ζ̃(kTA). When the level of ζ̃(kTA)
falls below rth, then (soft) error bursts will occur. The (soft)
error burst lengths equal the numbers of samples located in
the corresponding fading intervals of ζ̃(kTA). Consequently,
a (soft) error burst length generator ẼBrec and a (soft) error-
free burst length generator ẼFBrec are obtained. Similar to
the notations used for the descriptive model in Section II,
we simply put the tilde sign on all affected symbols for the
generative model. For example, we write m̃B1, ÑEFB , and
ÑEB(me).

A. The Parametrization of the Sampled Deterministic Process

The first step for the design of the proposed hard (soft)
generative model lies in the parametrization of the employed
deterministic process based on the known quantities obtained
from the target hard (soft) error sequence. In the following,
a general idea is described to determine the parameters of
the underlying deterministic process used in the hard (soft)
generative model. The level-crossing rate (LCR) Ñζ(rth) at
the chosen threshold rth is fitted to the desired occurrence rate
REB = NEB/Tt of (soft) error bursts. Here, Tt denotes the
total transmission time of the reference transmission system,
from which the target hard (soft) error sequence of length Nt

is obtained. The ratio R̃B of the average duration of fades
(ADF) T̃ζ

−

(rth) at rth to the average duration of inter-fades
(ADIF) T̃ζ+

(rth) at rth is adapted to the desired ratio RB =
MEB/MEFB . Moreover, we must guarantee that the sampling
interval TA is chosen sufficiently small in order to detect most
of the level crossings and fading intervals at deep levels, i.e.,
rth � 1.

For our purpose, any forms of deterministic processes,
e.g., in [1], [20]-[23], [33], [34], with different degrees of
complexities can in principle be utilized. Obviously, it is
beneficial to choose a deterministic process which has as few
parameters as possible in order to increase the simulation
efficiency. In this paper, we will only consider the following
simple continuous-time deterministic process [20]-[23]

ζ̃(t) = |µ̃1(t) + jµ̃2(t)| (1)
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where

µ̃i(t) =

Ni∑

n=1

ci,n cos(2πfi,nt + θi,n) , i = 1, 2 . (2)

In (2), Ni defines the number of sinusoids. The phases θi,n

are considered as the realizations of a random generator
uniformly distributed over (0, 2π]. The gains ci,n and the
discrete frequencies fi,n are calculated by using the method
of exact Doppler spread (MEDS) [33] and are given by

ci,n = σ0

√
2

Ni

(3)

fi,n = fmax sin

[
π

2Ni

(n − 1

2
)

]
(4)

respectively. Here, σ0 is the square root of the mean power of
µ̃i(t) and fmax represents the maximum Doppler frequency.
The deterministic nature of the resulting process ζ̃(t) in (1)
stems from the fact that all the involved process parameters
are kept constant instead of random during the simulation.

When using the MEDS with Ni ≥ 7, it has been shown
in [33] that the LCR Ñζ(r) of ζ̃(t) fits very closely the LCR
Nζ(r) of a Rayleigh process, which is given by

Nζ(r) =

√
β

2π
pζ(r) , r ≥ 0 (5)

where
β = 2(πσ0fmax)2 (6)

and

pζ(r) =
r

σ2
0

exp(− r2

2σ2
0

) , r ≥ 0 (7)

denotes the Rayleigh distribution. It can also be shown that
the ADF T̃ζ

−

(r) and the ADIF T̃ζ+
(r) of ζ̃(t) approximate

very well the corresponding quantities Tζ
−

(r) and Tζ+
(r),

respectively, of a Rayleigh process. They are given by

Tζ
−

(r) =

√
2π

β

σ2
0

r

[
exp(

r2

2σ2
0

) − 1

]
, r ≥ 0 (8)

Tζ+
(r) =

√
2π

β

σ2
0

r
, r ≥ 0 . (9)

It follows that the ratio R̃B can be expressed as

R̃B =
T̃ζ

−

(rth)

T̃ζ+
(rth)

≈ Tζ
−

(rth)

Tζ+
(rth)

= exp(
r2
th

2σ2
0

) − 1 . (10)

From the analysis above, it is clear that the second or-
der statistics with respect to the LCR, ADF, and ADIF
of the underlying sampled deterministic process ζ̃(kTA)
are fully determined by the parameter vector Ψ =
(N1, N2, rth, σ0, fmax, TA). The confronted task now is to
find a proper parameter vector Ψ so that the following con-
ditions can be fulfilled: RB =

Tζ
−

(rth)

Tζ+
(rth) and REB = Nζ(rth).

For our purpose at hand, it is not necessary to include all the
elements of the parameter vector Ψ in the design. We can first
choose reasonable values for N1, N2, and rth, e.g., N1 = 9,

N2 = 10, and rth = 0.09. Then, performing RB =
Tζ

−

(rth)

Tζ+
(rth) ,

σ0 can be calculated according to the following expression

σ0 =
rth√

2 ln(1 + RB)
. (11)

With the help of the relation REB = Nζ(rth), fmax is given
by

fmax =
NEB√

πσ0Ttpζ(rth)
. (12)

The substitution of (7) into (12) yields the following explicit
expression

fmax =
NEB(1 + RB)

Tt

√
2π ln(1 + RB)

. (13)

Equation (13) clearly states that fmax is completely deter-
mined by the known quantities NEB , RB , and Tt of the
descriptive model, but not influenced by rth and σ0. The
sampling interval TA for small values of rth can suitably be
chosen as follows [22]

TA ≈ 4√
5π

Tζ
−

(rth)

√
−1 +

√
1 + 10qs/3 (14)

where qs is a very small quantity determining the maximum
measurement error of the LCR. This implies that the proba-
bility of undetectable level crossings at rth is not larger than
qs. Using (8), (14) can finally be expressed as

TA ≈
4σ0[exp(

r2
th

2σ2
0

) − 1]
√

5πrthfmax

√
−1 +

√
1 + 10qs/3 . (15)

By referring to the equations (11), (13), and (15), we point
out that the remaining parameters σ0, fmax, and TA of Ψ

can all be obtained as closed-form expressions of known
quantities. This allows the model users to unambiguously
choose a certain set of parameters of the sampled deterministic
process based on the given quantities obtained from the target
hard (soft) error sequence. Consequently, the stability of the
new generative model is greatly improved compared with
the model in [23]. With the resulting parameter vector Ψ,
a sampled deterministic process ζ̃(kTA) is simulated within
the necessary time interval [0, T̃t], i.e., 0 ≤ kTA ≤ T̃t. Here,
T̃t = TtÑt/Nt with Ñt denoting the required length of the
generated hard (soft) error sequence. The total numbers of
the generated (soft) error bursts ÑEB and (soft) error-free
bursts ÑEFB can approximately be estimated from ÑEB =

b Ñt

Nt
NEBc and ÑEFB = b Ñt

Nt
NEFBc, respectively. Here, bxc

stands for the nearest integer to x towards minus infinity, i.e.,
bxc ≤ x. In this manner, a (soft) error burst length generator
ẼBrec with ÑEB entries and a (soft) error-free burst length
generator ẼFBrec with ÑEFB entries are derived.

B. The Mappers

Our investigations have shown that the obtained generators
ẼBrec and ẼFBrec are in general not suitable to directly
generate an acceptable (soft) EBD and (soft) EFBD, respec-
tively. This is due to the fact that the resulting ÑEB(me)
and ÑEFB(mē) are far from proportional to NEB(me) and
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NEFB(mē), respectively. Therefore, the second step of the
design procedure is to develop two appropriate mappers, which
map the lengths of the generated (soft) error bursts and (soft)
error-free bursts to the corresponding desired lengths. The idea
of the mappers is to properly modify ẼBrec and ẼFBrec such
that ÑEB(me) = N ′

EB(me) and ÑEFB(mē) = N ′
EFB(mē)

hold, respectively. Here, N ′
EB(me) equals b Ñt

Nt
NEB(me)c or

b Ñt

Nt
NEB(me)c+ 1 for different (soft) error burst lengths me

in order to fulfill
∑mB2

me=mB1
N ′

EB(me) = ÑEB . Similarly,
N ′

EFB(mē) equals b Ñt

Nt
NEFB(mē)c or b Ñt

Nt
NEFB(mē)c + 1

for different (soft) error-free burst lengths mē to satisfy∑mB̄2

mē=mB̄1
N ′

EFB(mē) = ÑEFB . Since ÑEB(me) obtained
from the modified generator ẼBrec after the mapping pro-
cedure is almost proportional to NEB(me), the resulting
(soft) EBD P̃EB(me) will match well the desired (soft) EBD
PEB(me), i.e.,

P̃EB(me) =
1

ÑEB

me∑

x=mB1

ÑEB(x)

≈ 1

b Ñt

Nt
NEBc

me∑

x=mB1

b Ñt

Nt

NEB(x)c

≈ 1

NEB

me∑

x=mB1

NEB(x) = PEB(me) . (16)

By analogy, the resulting (soft) EFBD P̃EFB(mē) will be
close to the desired one PEFB(mē).

Next, we will only address how to properly modify ẼBrec.
The same idea applies also to ẼFBrec. For each (soft) error
burst length me (mB1 ≤ me ≤ mB2), we first find the
corresponding values `1

me
and `2me

(m̃B1 ≤ `1me
, `2me

≤ m̃B2)
in ẼBrec to satisfy the following conditions

`2me
−1∑

l=`1me

ÑEB(l) < N ′
EB(me) (17)

`2me∑

l=`1me

ÑEB(l) ≥ N ′
EB(me) . (18)

Let us define

N`2me
= N ′

EB(me) −
`2me

−1∑

l=`1me

ÑEB(l) . (19)

Clearly,
∑`2me

−1

l=`1me

ÑEB(l) + N`2me
= N ′

EB(me) holds. This
indicates that if we map all (soft) error burst lengths between
`1me

and `2me
− 1, while only N`2me

error burst lengths of
`2me

in ẼBrec to me, then ÑEB(me) = N ′
EB(me) will be

satisfied. Note that `1
mB1

= m̃B1 and `2mB2
= m̃B2 hold.

For example, let us assume that mB1 = 1, N ′
EB(1) = 5,

m̃B1 = 10, ÑEB(10) = 2, and ÑEB(11) = 3. The application
of this simple example to the above equations (17) and (18)
immediately results in `1

me
= 10 and `2

me
= 11. Then, the

error burst lengths of 10 and 11 in ẼBrec are all mapped to

the length 1. Consequently, ÑEB(1) = N ′
EB(1) = 5 holds. In

summary, the mapper for the (soft) error burst length generator
works as follows: if l (`1

me
≤ l ≤ `2me

− 1) samples of the
deterministic process are observed in a fading interval, then
a mapping l → me is first performed and afterwards a (soft)
error burst with length me is generated.

It is important to stress here that the above properly
designed mappers allow the developed generative model to
approximate very well any given (soft) EBD and (soft) EFBD.
This makes our proposed model sufficiently general to adapt
to different types of burst error statistics.

C. The Generation of Error Sequences

The third step for the design procedure of the DPBGM
is to generate hard (soft) error sequences from the modified
generators ẼBrec and ẼFBrec after the mappers.

1) The Generation of Hard Error Sequences: The genera-
tion of error-free bursts is straightforward since each entry of
ẼFBrec is simply interpreted as the number of consecutive
zeros. For generating error bursts, it is convenient to first
construct parameter vectors ẼCGj (j = 1, 2, . . . , ÑEB),
which reflect the configuration of each error burst in ẼBrec

by listing the corresponding consecutive cluster lengths and
gap lengths. To this end, we have to find all vectors ECGi

corresponding to error bursts with length me in EBrec. Then,
for all error bursts with the same length me in ẼBrec, we
assign randomly ẼCGj from all possible vectors ECGi.
With such a vector ẼCGj , an error burst is generated by
combining consecutive error clusters (ones) and gaps (zeros).
The resulting hard error sequence is simply the combination
of consecutively generated error bursts and error-free bursts.

2) The Generation of Soft Error Sequences: For generating
soft error bursts, we need first to find all vectors EBSi

corresponding to a soft error burst length me in EBrec.
Then, we randomly choose an underlying configuration (soft
decision symbols) from all possible vectors EBSi for all soft
error bursts with the same length me in ẼBrec. With such
a vector EBSi, a soft error burst of length me is generated.
By analogy, for the generation of soft error-free bursts, we
first have to locate all vectors EFBSj corresponding to a
soft error-free burst length mē in EFBrec. Afterwards, the
underlying configuration of a soft error-free burst with the
same length mē in ẼFBrec is at random selected from all
possible vectors EFBSj . In this manner, a soft error-free burst
of length mē is produced. The resulting soft error sequence is
simply the combination of consecutively generated soft error
bursts and soft error-free bursts.

In short, the design procedure of the proposed DPBGM
involves three steps: the parametrization of the sampled de-
terministic process, the development of two mappers, and the
generation of hard (soft) error sequences. We call the first
two steps the simulation set-up phase, while the last step
the simulation run phase. It should be noted that, although
the simulation set-up phase of the proposed DPBGM requires
relatively long time, the simulation run phase is very fast, since
it determines directly (soft) error burst and (soft) error-free
burst lengths instead of bit sequences. The design procedures
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of a hard generative model and a soft generative model based
on deterministic processes differ mainly in the last step. The
general block diagram of the proposed DPBGM is depicted in
Fig. 3.

IV. SIMULATION RESULTS AND DISCUSSIONS

In this section, the performance of the novel generative
models is investigated by applying the mechanism to exper-
imental error sequences. The burst error statistics defined in
Section II are used here as the performance criteria. In general,
one generative model outperforms another if it better fits the
important statistics, e.g., the (soft) BEPD, of the descriptive
model.

Uncoded EGPRS transmission systems were employed to
generate target soft error sequences. The underlying digital
channels are composed of a Gaussian minimum shift keying
(GMSK) modulator, a propagation channel with co-channel
interference, a GMSK demodulator, and a 4-bit soft decision
Viterbi equalizer. The data were transmitted in time-division
multiple access (TDMA) bursts of 116 bits with a transmission
rate of Fs =270.8 kb/s. As specified in [35], the deployed
propagation channels can be denoted as NAMEx. Here, x
represents the vehicle speed in km/h and NAME stands for
the name of a particular channel, e.g., a typical urban (TU)
channel and a rural area (RA) channel. Also, the system can
use either no frequency hopping (NFH), or ideal FH (IFH)
which implies perfect decorrelation between TDMA bursts
[35]. In this paper, we have considered one typical narrowband
propagation channel profile, RA 275 NFH, as well as three
typical wideband propagation channel profiles: TU3 IFH, TU3
NFH, TU50 NFH [35]. In the case of NFH, since data are
transmitted using a GSM carrier within a bandwidth of 200
kHz, the system is a narrowband one. When FH is employed,
the system operates in a wide frequency band. Depending
on the actual frequency band assigned to the operator, a
bandwidth of 5MHz or more is in fact used.

The target soft error sequences of length Nt = 15×106 were
produced at carrier-to-interference ratios (CIRs) of 5 dB, 7 dB,
8 dB, 9 dB, 11 dB, 13 dB, 15 dB, and 17 dB. The total trans-
mission time is therefore Tt = Nt/Fs = 55.3914 s. The target
hard error sequences were obtained as quantized versions of
the corresponding soft error sequences. This is the same as we
obtain target hard error sequences from the uncoded EGPRS
systems with a hard decision Viterbi equalizer. By using the
design procedure of the proposed DPBGMs in Section III,
hard (soft) error sequences of length Ñt = 20 × 106 were
generated. It follows that the necessary simulation time of the
deterministic processes is T̃t = TtÑt/Nt = 73.8552 s. For
the sake of brevity, only the simulation results of the EGPRS
system with the TU3 IFH channel will be presented here.
For other channel types, the presented error models perform
similarly well.

Let us first study the performance of the obtained hard gen-
erative model in terms of the interested burst error statistics.
The GDs, the EFRDs, the ECDs, the EBDs and EFBDs with
η = 800, the BEPDs with blocks of 116 bits (n=116) per
TDMA burst, and the BECFs calculated from the target and

( S o f t )  E r r o r  B u r s t  
L e n g t h  G e n e r a t o r

( S o f t )  E r r o r - F r e e  B u r s t
L e n g t h  G e n e r a t o r M a p p e r

M a p p e r
H a r d   ( S o f t )

E r r o r  S e q u e n c eT h r e s h o l d
D e t e c t o r

   S a m p l e d
D e t e r m i n i s t i c
   P r o c e s s         

Fig. 3. The general block diagram of the proposed DPBGM.

generated hard error sequences were compared. For further
comparison purposes, the relevant results of a six-state SFM
were also presented. The transition probability matrix of a K-
state SFM is calculated by expressing the EFRD P (0m0/1)
as the sum of K-1 exponentials with suitable weighting
coefficients [8]. This procedure has to involve curve fitting
techniques and is called the simulation set-up phase of a SFM.
From the transition probability matrix of a SFM, hard error
sequences can be generated with any desired length, which is
considered as the simulation run phase of a SFM. In our case,
the fitting of P (0m0/1) is achieved by using five exponentials.
Our experiments have shown that no better performance can
be obtained from SFMs with more than six states. The same
conclusion was also given in [20]–[23].

As an example, we will only show the simulation results
of the descriptive model and two hard generative models for
the EGPRS system with the TU3 IFH channel at a CIR of
8 dB. The chosen parameter vector for the underlying sampled
deterministic process was Ψ = (9, 10, 0.09, 0.0783, 73.22 Hz,
0.8132 ms), which were calculated from the given quantities:
RB = 0.9344, NEB = 4269, and qs = 0.01. Figs. 4–7
show the resulting ECDs, EBDs, BEPDs, and BECFs of the
descriptive model and both hard generative models, respec-
tively. The results for the GDs, EFRDs, and EFBDs of the
three models are not presented here since they are very close
to each other. As expected, all these curves for the DPBGM
have very excellent agreements with the target ones. However,
relatively large deviations were found for the fittings to the
desired ECD, EBD, BEPD, and BECF by using the SFM. This
demonstrates that the SFM fails to model some characteristics,
especially the correlation properties, of the target hard error
sequence. Concerning the simulation time, we do not need
to compare the simulation set-up phase of the DPBGM and
the SFM. For generating a hard error sequence of length
20× 106, the DPBGM and the SFM need for their simulation
run phase about 1.25 s and 107.5 s, respectively. Hence, from
both the accuracy and simulation efficiency points of view,
the superiority of the DPBGM over the SFM is obvious.
Experiments have shown that the descriptive model needs
approximately 8.5 hours for generating a hard error sequence
of length 20×106. This clearly indicates the advantage of the
generative models over the underlying descriptive model.

Then, we investigate the interested burst error statistics
of the proposed soft generative model. As mentioned in
Section II, the SGDs, SEFRDs, SECDs, SEBDs, SEFBDs, and
SBEPDs of target soft error sequences are exactly identical to
the corresponding GDs, EFRDs, ECDs, EBDs, EFBDs, and
BEPDs, respectively, of target hard error sequences. This is
due to the fact that the target hard error sequences were ob-
tained as quantized versions of the target soft error sequences.
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Fig. 5. The EBDs of the descriptive model and the hard generative models.

By using the proposed soft DPBGM, the resulting SGD,
SEFRD, SECD, SEBD, SEFBD, and SBEPD are the same
as those obtained from the hard generative model. Therefore,
these statistics have excellent approximations to those of the
descriptive model, as we have verified for the hard generative
model. For brevity of presentation, the results are omitted
here. Fig. 8 demonstrates the good match between the SDSDs
of the descriptive model and the DPBGM. As examples, the
CIRs of 9 dB and 19 dB were selected. In case of CIR=9
dB, the ratio RB = 0.73865 and NEB = 4263 soft error
bursts were obtained. With qs = 0.01, the chosen parameter
vector for the corresponding deterministic process was Ψ =
(9, 10, 0.09, 0.0856, 71.785 Hz, 0.71593 ms). For CIR=19 dB,
RB = 0.093488 and NEB = 2006 hold. The chosen
parameter vector was Ψ = (9, 10, 0.09, 0.21288, 52.841 Hz,
0.30635 ms).
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V. APPLICATION TO ERROR CONTROL STRATEGIES

To further illustrate the accuracy of the proposed DPBGMs,
we applied them to the performance evaluation of coded
EGPRS systems with hard and soft decoding algorithms. The
modulation and coding scheme 3 (MCS3) [35] was chosen as
a practical example. Again, only the simulation results for the
TU3 IFH channel profile are presented here.

Fig. 9 plots the resulting radio link control (RLC) header
and data FERs of the MCS3 coded EGPRS system with a
hard decoding algorithm obtained from the descriptive model
and two hard generative models. Here, one frame includes 4
TDMA bursts. It is clear that the FERs obtained from the
DPBGM coincide very well with those obtained from the
descriptive model, while the accuracy of the FERs obtained
from the SFM is not acceptable. The same conclusion holds
for the RLC header and data RBERs of the MCS3 coded
EGPRS system with a hard decoding algorithm, which are
demonstrated in Fig. 10. The RBER is the ratio of the number
of errors detected over the frames defined as “good” to the
number of transmitted bits in the “good” frames [35].

Figs. 9 and 10 also illustrate the excellent accordance of the
resulting RLC data FERs and RLC data RBERs, respectively,
of the MCS3 coded EGPRS system with a soft decoding
algorithm obtained from the descriptive model and the DP-
BGM. Good agreements were also observed concerning the
corresponding RLC header FERs and RLC header RBERs. We
omit the results here in order to retain the clarity of the figures.
Obviously, compared with using a hard decoding algorithm,
better performance of the MCS3 coded EGPRS system can be
obtained by using a soft decoding algorithm.

It is important to mention that we have also successfully
applied the proposed DPBGMs to the EGPRS systems with
the TU3 NFH, TU50 NFH, and RA275 NFH channel profiles.
Furthermore, performance simulations of the coded EGPRS
systems with the MCS1 [35] were carried out. Satisfactory
results were found in all tested cases. In this manner, the
reliability and generality of the proposed DPBGMs, as well as
their applicability to coding system evaluation, are validated.

VI. CONCLUSION

This paper has demonstrated a general procedure of design-
ing a new class of hard and soft generative models by using
a properly parameterized and sampled deterministic process
followed by a threshold detector and two parallel mappers.
Simulation results indicate that the proposed DPBGMs have
the attractive capability to approximate very well all the
interested burst error statistics of the underlying descriptive
models. The reliability of the suggested hard (soft) DPBGM
is further confirmed by performance simulations of coded EG-
PRS systems with a hard (soft) decoding algorithm obtained
from the target and generated hard (soft) error sequences.
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