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Abstract — Generative models have significant ap-
plications in the design and performance evaluation of
communication protocols as well as coding systems. In

this paper, a novel deterministic process based gener-

ative model (DPBGM) is proposed for the character-
ization of burst errors in Rayleigh fading channels. A
simple procedure has been developed for generating an
error sequence with desired burst error statistics from
a properly sampled and parameterized deterministic
process followed by a threshold. The proposed gen-
erative model enables us to perfectly match any given
error burst distribution (EBD) and error-free burst dis-
tribution (EFBD) of the underlying descriptive model.
The gap distribution (GD) and the error-free run dis-
tribution (EFRD) obtained from the generated error
sequence can also be fitted to those of the target error
sequence with good accuracy.

{. INTRODUCTION

In digital wireless communication systems, channel im-
pairments will greatly influence the transmission process
in such a way that the errors occur in bursts. Many re-
searches have shown that the statistical properties of the
error process have a significant impact on the performance
of a communication system [1, 2]. A proper understanding
and an accurate modeling of the error process are there-
fore necessary. Error nmiodels for describing the bursty error
process can be classified as descriptive models [3] and gen-
erative models [4]. Descriptive models analyze burst error
statistics of the error sequence obtained directly from ex-
perimental results. Generative models are parameterized
mathematical models capable of generating a statistically
similar error sequence as produced by the real channel.
Error models are essentially required for the design and
‘performance evaluation of communication protocols [5].

Up to now, most commonly used generative models are
hased on finite-state Markov chains (FSMCs) or hidden
Markov chains. Gilbert [6] and Elliot [7] proposed sim-
ple two-state Markov models. The disadvantage of a two-
state Markov model is its limited capability to reproduce
the desired burst error statistics. One way to overcome this

problem is to enlarge the number of states [8-11]. Frichman |
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[8] investigated FSMC models with more than two states.
These states are partitioned into error-free states and er-
ror states. Simplified Frichman’s models (SFMs) with a
single error state were further been applied to character-
ize HF channels [9], VHF channels {10}, and UHF channels
[11]. Another class of generative models are hidden Markov
models [12, 13], which lack a direct intuition between the
channel behavior and the underlying Markov chain. More
recently, bipartite models [14] were proposed. The Markov
chain used in a bipartite model forms a bipartite graph. Al-
though a large number of states will almost surely provide
a better representation of the channel, the complexity of
the model makes the subsequent performance analysis of
high layer protocols increasingly difficult.

Deterministic processes [15, 16}, based on the principle
of Rice’s sum of sinusoids [17, 18], have so far exclusively
been employed for emulating the fading behavior of the re-
ceived signal, but not for the generation of error sequences.
Deterministic processes have several advantages, e.g., the
process parameters can easily be determined, the processes
can efficiently be implemented on a computer, and their
statistical properties can be varied in wide ranges. Despite
these promising advantages, the development of generative
models by using deterministic processes is still missing in
the literature, due to the lack of a proper procedure for
generating an error sequence from a deterministic process.
The aim of the present paper is to fill this gap.

The rest of this paper is structured as follows. Somc
concepts and the relevant burst error statistics are re
viewed in Section II. Section III presents a descriptive
model, which is considered as the reference model for the
development of the generative model in Section IV. Sec
tion V compares the burst error statistics of the underlying
descriptive model, the proposed generative model, and
SFM. Finally, the conclusions are drawn in Section VI.

II. BUrRST ERROR STATISTICS

In this section, some concepts used to describe the burs
error statistics are briefly reviewed. For convenience, an er
ror sequence is in general represented by a binary sequenc:
of ones and zeros, where “1” denotes an error bit and “O’
denotes a correct bit.
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Following [9, 10], a gap is defined as a string of consecu-
tive zeros between two ones and has the length equal to the
number of zeros. An error-free burst [14] is defined as an
all-zero sequence with a length of at least n bits, where n
is an positive integer. The difference between an error-free
burst and a gap is that an error-free burst has the mini-
mum length of 7 and it is not necessarily located between
two errors. An error burst [14] is a sequence of zeros and
ones beginning and ending with an error, and separated
from neighboring error bursts by at least 1 error-free bits.
It should be noted that the minimum length of an error
burst is 1 and the number of consecutive error-free bits
within an error burst is less than n. Hence, the local error
density inside an error burst is greater than A = 1/7.

The following notations for burst error statistics will be
used throughout the rest of the paper:

1) G(my): the GD. which is defined as the cumulative
distribution of the gap length my.

2) P(0™/1): the EFRD, which is the probability that an
error is followed by at least m error-free bits. The
EFRD can be calculated from the GD [9]. It is clear
that P(0™ /1) is a monotonically decreasing function
of m such that P(0°/1) = 1 and P(0™/1) — Q as
m — oQ.

3) Prg(me): the EBD, which is the cumulative distribu-
tion of the error burst length me..

4) Prrg(ms): the EFBD, which is the cumulative dis-
tribution of the error-free burst length ms.

11I. THE DESCRIPTIVE MODEL

A descriptive model analyzes the interested burst er-
ror statistics of the target error sequence obtained directly
from experimental results. In this paper, the target et-
ror sequence is generated by a computer simmlation of a
cohierent QPSK system with a Rayleigh fading channel.
The underlying Rayleigh fading channel is modeled by the
following deterministic process {16, 19]:

C(t) = 1) = | (t) + gz (t)] (1)
where
N,
fii(t) =Y cincos@mfint+0in), i=12. (2)
n=1

In (2). N; defines the number of sinusoids, ¢;n, fin, and
6, ., are called the Doppler coefficients, the discrete Doppler
frequencies, and the Doppler phases, respectively. By us-
ing the method of exact Doppler spread (MEDS) [16, 19],
the Doppler phases 8, ., are the realizations of a random
generator uniformly distributed over (0, 27|, while ¢; ,, and
fim arve given by '

Cin = 00

=

N (3)
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respectively. Here, og is the square root of the mean power
of f1;(t) and fines is the maximum Doppler frequency.

The average bit error probability (BEP) of the adopted
transmission system is obtained by evaluating 8x 10° trans-
mission bits with a transmission rate of Fy = 144 kb/s,
which is the same as specified for vehicular users in UMTS
systems. The total transmission time is therefore 7y ~~ 55.6
s. Fig. 1 depicts the simulated BEP together with the theo-
retical BEP given in [20] versus the average signal-to-noise
ratio (SNR). The mean power was given by o2 = 1/2 and
the maximum Doppler frequency was chosen as fina, = 74
Hz, which corresponds to a carrier frequency of 2 GHz and
a vehicle velocity of 40 km/h. The numbers of sinusoids
were chosen as Ny = 9 and Ny = 10. A SNR of 15 dB was
selected for the generation of the target error sequence.
The corresponding BEP is 7.5341 x 10~3. Hence, the to-
tal number of errors is N, = 60273 for the given length
N, = 8 x 10° of the error sequence.

The relevant burst error statistics can be obtained from
the resulting error sequence. To avoid a bit-by-bit process-
ing of the error sequence, a sensible way of recording error
data is to list the successive gap lengths. It is a means
of compressing the error sequence and called gap record-
ing [10]. Once the gap recording has been completed, the
GD G(myg) and the EFRD P(0™/1) can easily be calcu-
lated. Figs. 2 and 3 show the resulting GD and EFRD,
respectively. Note that the initial part of the GD has a
relatively steep slope. This indicates that short gaps, say
1-300, occur with high probability. The last part of both
curves illustrates that some long gaps, say 1000-29099, ex-
ist. The middle flat part demonstrates that very few gaps
with lengths between 300 and 1000 are present.

From the gap recorder, the error burst recorder EB, ...
and the error-free burst recorder EFB,... can further be
obtained. Here, EB,.. is a vector which keeps a record )
of successive error burst lengths, while EFB,.. records
successive error-free burst lengths. Let us denote the min-
imum value and the maximum value in EB,... as mp; and
mpa, respectively. This means that the length m, of error
bursts satisfies mp; < m. < mpo. By analogy, the mini-
mum value and the maximum value in EFB,... are denoted
as mpgy and mp,, respectively. Moreover, for the deriva-
tion of the generative model, it is convenient to define the
following parameters:

1) Ngp: the total number of error bursts, which is equal
to the number of entries in EB .

2) Ngpp: the total number of error-free bursts, which is
equal to the number of entries in EFB,...

3) Nggp{m.): the number of error bursts of length m. in
EBTCC'

4) Ngpp{me): the number of error-free bursts of length
mg in EFB, ..

5) Egpg: a vector which records the number of errors in
each error burst of EB,... The number of entries in
Egg is Ngg.
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The EBD Pgg(m.) and the EFBD Pgpp(ms
calculated by

) can be

l . e
Prp(me) = N Z Ngg(k) . mp1 <me <mpa (5)
k=my

me

Y Nerp(k), mpy < me < mpy

k=m g3

(6)
respectively. By setting n = 300, altogether Ngp = 1629
error bursts and Ngpg = 1630 error-free bursts are ob-
tained. The lengths of the error bursts range frommpg; = 1
to mpe = 6182, while the lengths of the error-free bursts
range from mpg; = 302 to mpzy = 29099. The resulting
EBD and the EFBD are plotted in Fig. 4.

Pprp(me) = NEFB

IV. THE GENERATIVE MODEL

It is widely accepted that the second order statistics
of the fading envelope process are closely related to the
statistics of error bursts. This inspires us to develop
a generative model by using a properly parameterized
cleterministic process followed by a threshold ry,. During
the simulation, the level of the deterministic process will
be from time to time below and above the given threshold
depending on the chosen parameters. If the level of the
deterministic process is below the threshold, then an error
burst occurs at the model output. On the other hand, if
the level of the deterministic process is above the thresh-
old, then an error-free burst is generated at the model
output. The level-crossing rate (LCR) of the deterministic
process has to be fitted to the occurrence rate of error
bursts by finding a proper threshold and proper values for
the parameters describing the deterministic process.

A. The LCR Fitting

Let us consider the deterministic process C(t) in (1).
Its parameters ¢; n, fin, and ; ,, are again determined by
using the MEDS. The LCR of ¢ (t) can approximately be
expressed as (16]:

Ne(r) = '\/g;pc(r), r>0 ‘ (7)

where N
B =2r? Z(Ci,ﬂ.fi,n)Q 8) -
n=1
and 2
pe(r) = — exp(~ )= 720 9)
o3

denotes the\Rayleigh distributiouA The problem at hand
is to find a proper parameter vector ¥ = (g, "th, fmaz) I
order to fit the LCR NC(T) of the deterministic process at
I = 1y, to the given occurrence rate Rgg = Npg/T; of

exror bursts. For this purpose, we first fix o and r¢p, e.g.,

by choosing op = 0.5 and 1, = 0.2. Then, we calculate
fmaz according to the following expression:

Ngp

fmaz = ————F=
Tipe(ren)y/ aﬁ;

7 —zﬂz{cmsm[w (n - é)}}g Y

n=1

(10)

where

The chosen parameter vector is ¥ =
which leads to the perfect LCR fitting.

(0.5,0.2,44.8025),

B. The Properly Sampled Deterministic Process

By using the obtained parameters, a deterministic pro-
cess is generated in the time interval ¢ € [0,73]. It should
be mentioned that error bursts and error-free bursts cor-
respond to fading intervals and inter-fade intervals, re-
spectively, of the deterministic process with the specified
threshold level. However, the lengths of the generated er-
ror bursts and error-free bursts depend on the sampling
interval T4 of the deterministic process. In order to adapt
the EBD and the EFBD of the generative model to any
given EBD and EFBD, T4 should be sufficiently small
with respect to the symbol duration T = 1/Fs of the
reference transmission system. In this paper, we have se-
lected Ty = T /6 empirically. Consequently, N, = 48x 108
samples of the deterministic process are produced. An er-
ror burst recorder EB,.. and an error-free burst recorder
EFB,.. are then obtained, which record the numbers of
samples in successive fading intervals and inter-fade in-
tervals, respectively. Due to the perfect LCR fitting,
]2]\3_1ec has the same number of entries as in EB,.... Also,
EFB,.. and EFB,.. have the same number of entries.
Let us define the similar parameters to those in Section
[II by simply putting the tilde sign on all affected sym-
bols, i.e., we write mp1, mBg, NEB(me) etc. The idea
is to modify EBTeC and EFBreC in such a way that one
can find for all entries of these vectors corresponding en-
tries in EByq. and EFB .., respectively. This implies that
Ngg(me) = Ngg(me) and NEFB(me) = Ngrp(me) hold.
It follows that the resulting EBD Pgg(m.) and EFBD
Pgpp(me) are fitted perfectly to Pgp(me) and Pgrg(ms),
respectively. L

For the purpose of properly modifying EB,..., we first
find the error burst length values £}, and €2, (g <

2L, , 2, < iapy) to satisfy the following conditions:
1 .
Z NEB(/C) < Ngg(m,.) and Z NEB(/C) > Neg(me)
k=g, k=¢},
for Ngp(me) # 0 and mp) < m, <mps . (12

Let us define
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2

e -1

Neg, = Z Ngg(k) = Npg(me) . (13)
k=t1,

= 1hpy and £2 = 7go hold. More-

T3

e
Note that £,

over, Ch, o = if Na >0, while £, ,, = €2 +1.

if Nz = 0. Once Tq < T is ensured, z?n,, < me is

always fulfilled. The next step is to find the entries be-

tween £}, and £Z —~ 1 in EB,., and then replace them
by m,. Also, find the entries with the value Efna in Eﬁmc.
Only Np2 —of them are replaced by m. i order to ensure
that NEB(me) = Ngpg(m.) holds. Following this proce-
dure, corresponding values can be found in possibly differ-
ent positions of EB,.e. and EB,¢.. Then, proper numbers
of samples in successive fading intervals of the determinis-
tic process are chosen according to the modified values in
EB'I‘BC' e

The above described procedure applies also to EFB ..
Proper numbers of samples in successive inter-fade inter-
vals of the determinisnic}gr/ocess are chosen according to
the modified values in EFB,... Consequently, from the
resulting properly sampled deterministic process, the dis-
tributions Pg B(me) and Pgp 5{me) of the generated error
bursts and error-free bursts are fitted perfectly to the given
EBD Pgg(m.) and the EFBD Pgrg(ms), respectively.
It is important to mention that the whole procedure

" described in this subsection is nothing else than a mapping
system. For example, if £,,,, (£, < £, < €2, ) samples of
the deterministic process are observed in a fading interval,
a mapping 2,, -— m, is first performed and then an error
burst with length m. is generated.

C. The Generation of Error Sequences

In this subsection, from the deterministic process fol-
lowed by a specified threshold and a mapper, an approach
is described to enable the generation of an error sequence.

For generating error bursts, it is convenient to construct
a parameter vector Egs, wl/nvch records the number of er-
rors in each error burst of EB,... To reach this aim, we
first have to find the numbers of errors in the error bursts
with length m,e (mpgy < me < mpa) in EByec. Then, we
assign randomly these corresponding numbers of errors to
the error bursts with length m, in IT]E,,QC. The genera-
tion rule of an error burst with a certain number of errors
is as follows: an error occurs at least at both ends, the
remaining errors occur randomly, and the local error den-
sity inside an error burst is always greater than the given
value A. For generating an error-free burst, the length is
interpreted as the number of consecutive zeros.

V. PERFORMANCE EVALUATION

In order to evaluate the overall performance of the pro-
»osed DPBGM, the average BEP, the GD, the EFRD, the
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EBD, and the EFBD calculated from the generated error
sequence will be compared to those of the target error se-
quence. Furthermore, the relevant results of a SFM will
also be presented for comparison purposes. The parame-
ters of a NV-state SFM are obtained by fitting the weighted
sum of N — 1 exponentials to the EFRD P(0™/1) {8]. In
this paper, a 6-state SFM is employed. Note that no better
fitting can be obtained by increasing the number of states.

The average BEP obtained from the DPBGM is ex-
actly equal to the original BEP 7.5341 x 10~3, while the
SFM produces an error sequence with the average BEP of
7.5337 x 1073, Figs. 2 and 3 also include the GDs and the
EFRDs of both generative models, respectively. These two
curves of both the DPBGM and the SFM can approximate
those of the descriptive model with good accuracy. With-
out any surprise, the SFM enables a better fitting to the
desired GD and the EFRD compared with the DPBGM.
The EBDs and the EFBDs of the generative models are
illustrated in Fig. 4 together with the results already ob-
tained for the descriptive model. As expected, the perfect
match is observed in both curves for the DPBGM, while
the SFM fails to capture these two statistics with high
precision.

VI. CONCLUSION

This paper proposes a novel generative model, which is
simply a deterministic process followed by a threshold and
a mapping system. The design procedure runs as follows.
In the first step, the parameters of the deterministic pro-
cess and the specified threshold are determined by fitting
the LCR to the occurrence rate of error bursts of the de-
scriptive model. During the simulation, if the level of the
deterministic process is below (above) the given threshold,
an error burst (error-free burst) occurs at the model out-
put. Then, by properly choosing the samples of the deter-
ministic process, the distributions of the generated error
bursts and error-free bursts can perfectly be adapted to
any given EBD and EFBD, respectively. At last, a simple

~approach is presented to enable the generation of an error

sequence from the properly sampled deterministic process.
It is illustrated by various simulation results that the pro-
posed DPBGM can accurately reproduce the desired burst
error statistics.
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