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ABSTRACT

Errors encountered in digital wireless channels are not independent but rather form bursts or clusters. Error models aim to
investigate the statistical properties of bursty error sequences at either packet level or bit level. Packet-level error models
are crucial to the design and performance evaluation of high-layer wireless communication protocols. This paper proposes
a general design procedure for a packet-level generative model based on a sampled deterministic process with a threshold
detector and two parallel mappers. In order to assess the proposed method, target packet error sequences are derived
by computer simulations of a coded enhanced general packet radio service system. The target error sequences are com-
pared with the generated error sequences from the deterministic process-based generative model using some widely used
burst error statistics, such as error-free run distribution, error-free burst distribution, error burst distribution, error cluster
distribution, gap distribution, block error probability distribution, block burst probability distribution, packet error cor-
relation function, normalized covariance function, gap correlation function, and multigap distribution. The deterministic
process-based generative model is observed to outperform the widely used Markov models. Copyright © 2013 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

In general, there are two types of wireless fading channels:
physical (analog) channels and digital channels. Common
parameters of physical channels are noise and/or interfer-
ence power, received signal strength, Doppler frequency,
and so on. Physical channel models mainly characterize
fading processes due to the channel impairments and their
impact on the received signal. Well-known physical chan-
nel models are Rayleigh and Rice models [1]. A digital
(time-discrete) channel refers to the entire communi-
cation chain, which includes the transmitter, the physical
channel, and the receiver in the complex baseband.

†This paper was presented in part at the IEEE International Conference

on Communications (ICC 2005), Seoul, Korea, May 2005.

Errors occurring in digital wireless channels are not inde-
pendent but instead form clusters or bursts. Common
parameters of digital channels are the number and distri-
bution of error events in a sequence of bits or packets.
Channel models that are able to characterize the statis-
tical properties of these bursty error events are called
error models, which can further be divided into descrip-
tive models [2] and generative models [3]. As the name
implies, descriptive models describe burst error statistics
of reference (target) error sequences obtained directly from
experimental results and are therefore considered as ref-
erence models. Generative models, on the other hand,
define mechanisms to generate error sequences with bursty
error statistics similar to those of target error sequences
and are therefore considered as simulation models. Both
descriptive and generative models can be applied to the
design, optimization, and performance evaluation of error
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control strategies and high-layer wireless communication
protocols [4–7]. However, compared with descriptive
models, generative models have the advantage of sig-
nificantly reducing the computational effort required for
obtaining long error sequences, and hence reducing the
simulation time.

The choice between bit-level and packet-level error
sequences depends on the goal of the designer. If the goal
is to evaluate error control strategies, then bit-level error
sequences are used. On the other hand, if the purpose is to
evaluate high-layer protocols such as media access control
and automatic repeat request schemes, then packet-level
error sequences must be used.

In the literature, five classes of generative models have
been developed for generating bit-level error sequences.
Nonetheless, they can also be utilized to produce packet-
level error sequences by properly tuning the involved
parameters. The first class of generative models is based
on finite [8–15] or infinite state Markov chains [3]. Simpli-
fied Fritchman’s models (SFMs) [9,13,14], consisting of
only a single error state and a number of error-free states,
have been widely used. More advanced finite state Markov
models such as bipartite models [10] have very high
complexity when a satisfactory accuracy is required. The
second class is hidden Markov models (HMMs) [16–18].
As their name implies, these models follow Markov chains
but with hidden parameters that can be known through
observations. Baum–Welch (BW) algorithm [19] has been
widely used to train the observations in order to obtain the
hidden parameters. The large number of states required for
high-accuracy HMMs increases their complexity, thereby
making the performance analysis of high-layer protocols
increasingly difficult. The third class of generative models
is based on stochastic context-free grammars [20]. These
models are only applicable to error bursts with bell-shaped
error density. Chaos theory [21–24] has been exploited to
construct the fourth class of generative models. These mod-
els fail to describe some of the desired burst error statistics,
especially the error correlation function.

Lastly, deterministic process-based generative models
(DPBGMs) [25–27] are considered as the most promising
class of generative models because they can approximate
the desired burst error statistics very well. All the afore-
mentioned models involve stochastic processes. However,
the main process in the DPBGM is deterministic because
the parameters are kept constant during the simulations.
The idea of DPBGMs stems from the second-order statis-
tics of fading processes. In [26], the authors proved the
superiority of DPBGMs over other investigated models
(e.g., SFM) for both hard and soft bit error sequences. In
this paper, we extend the idea of Wang and Xu [26] and
develop a DPBGM for the simulation of packet-level error
sequences [27] and further investigate its performance. An
enhanced general packet radio service (EGPRS) system
at the radio link layer is utilized to obtain target packet
error sequences. It is shown through simulations that the
DPBGM is able to generate error sequences having burst
error statistics similar to those of target error sequences.

The main contributions of this paper are summarized
as follows.

(1) A general design procedure for packet-level
DPBGMs is proposed. This is different from the
bit-level DPBGM proposed in [26].

(2) A complete set of burst error statistics available in
the current literature are thoroughly investigated in
this paper in order to fully scrutinize the perfor-
mance of the proposed packet-level DPBGM. To the
best of our knowledge, only a subset of burst error
statistics were studied in the previous papers [8–27].

(3) Furthermore, the burst error statistics, complexity,
and simulation efficiency of the proposed DPBGM
are compared not only with SFMs but also with
BWHMMs. In [26], we have only compared the bit-
level DPBGM with an SFM in terms of burst error
statistics and simulation efficiency, whereas in [27],
we have only compared the packet-level DPBGM
with an SFM in terms of burst error statistics. It has
been shown that the proposed packet-level DPBGM
is superior to SFM and BWHMM in terms of all the
performance metrics.

The organization of this paper is as follows. Section 2
defines some terms related to binary error sequences. The
design methodology of the proposed packet DPBGM is
given in Section 3. In Section 4, the burst error statistics of
the target error sequences obtained from the EGPRS sys-
tem are compared with those burst error statistics of the
generated error sequences using the DPBGM, an SFM, and
a BWHMM. Finally, conclusions are drawn in Section 5.

2. PACKET ERROR SEQUENCE

Packet error sequence is a string of ‘0s’ and ‘1s’. A
correctly received packet is denoted by ‘0’ in the error
sequence. Otherwise, the packet is deemed to be in
error and represented by ‘1’. In order to characterize the
error sequence efficiently, it is necessary to define some
terms. A gap is a series of consecutive zeros between two
ones, having a length equal to the number of zeros [13,28].
An error cluster is a region where the errors occur succes-
sively and has a length equal to the number of ones [9]. An
error-free burst is defined as an all-zero sequence with a
minimum length of � packets, where � is a positive integer
[10,17]. An error burst is a chain of zeros and ones, start-
ing and ending with a ‘1’, and separated from neighboring
error bursts by error-free bursts [10,17].

Obviously, a packet error sequence is composed of con-
secutive error bursts and error-free bursts, whereas an error
burst is composed of successive error clusters separated
by gaps of length less than �. The features of interest, in
our study, are the error burst and error-free burst lengths.
Therefore, we construct an error burst recorder EBrec and
error-free burst recorder EFBrec to record the consecu-
tive error burst and error-free burst lengths, respectively.
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The minimum and maximum values in EBrec are denoted
as mB1 and mB2, respectively. Similar notations can be
applied to EFBrec.

3. THE DETERMINISTIC PROCESS
BASED GENERATIVE MODEL

Fading processes can be described using second-order
statistics such as level-crossing rate (LCR) and average
duration of fades (ADF). It has been observed that second-
order statistics are related to burst error statistics. This
is the motivation for proposing a generative model based
on fading processes. A packet error sequence has con-
secutive error bursts and error-free bursts. Similarly, each
fading interval is followed by an inter-fading interval.
Therefore, we can extract an error burst length generator
and an error-free burst length generator directly from a
deterministic process in order to build up a packet-level
generative model.

The utilized deterministic fading process Q�.t/ is sampled
with a reliable sampling period TA. This is natural when
considering block or packet transmissions, especially when
the packet is short and the data rate is high; that is, data rate
is much greater than Doppler frequency. In this case, it is
reasonable to assume that the various bits of a same packet
experience approximately the same channel conditions [4].
For this purpose, a threshold detector with a chosen thresh-
old value rth is then applied to the sampled deterministic
process Q�.kTA/, where k is a non-negative integer. During
the simulation, the level of the deterministic process fluc-
tuates and crosses the given threshold rth along the time
axis. If the level of Q�.kTA/ is larger than rth, the model’s
output produces an error-free sample, whereas error sample
occurs when the level of Q�.kTA/ is less than rth. The counts
of consecutive error samples or error-free samples, in the
corresponding fading and inter-fading intervals of Q�.t/, are
the lengths of the error bursts and error-free bursts. This
is the mechanism for obtaining the error burst length gen-
erator fEBrec and error-free burst length generator eEFBrec.
Note that any symbol that has a tilde ( Q ) sign is related to
the generative model.

3.1. The parametrization of the sampled
deterministic process

A reference packet error sequence is essentially required
to find out the parameters of the underlying determinis-
tic process used in the packet generative model. The LCR
QN� .rth/ at the chosen threshold rth is fitted to the desired

occurrence rate REB D NpNEB=Tt of error bursts. Here,
Np stands for the packet size, NEB is the total number of
error bursts, and Tt denotes the total transmission time of
the reference transmission system, from which the refer-
ence packet error sequence of length Nt bits is obtained.
The ratio QRB of the ADF QT��.rth/ at rth to the average
duration of inter-fades (ADIF) QT�C.rth/ at rth is approxi-
mated to the desired ratio RB DMEB=MEFB, where MEB

and MEFB are the mean values of the error burst and error-
free burst lengths, respectively in the reference packet error
sequence. Moreover, the sampling interval TA is chosen
carefully, as specified below, in order to detect most of the
level crossings and fading intervals at deep levels.

For the deterministic process, we choose a simple
continuous-time deterministic process [26,29,30] as

Q�.t/D j Q�1.t/C j Q�2.t/j (1)

with

Q�i .t/D

NiX
nD1

ci ;n cos.2 fi ;nt C �i ;n/ ; i D 1; 2 (2)

The number of sinusoids is Ni . The phases �i ;n are con-
sidered as the realizations of a random generator uniformly

distributed over .0; 2 �. The gains ci ;n D �0

q
2
Ni

where

�0 is the square root of the mean power of Q�i .t/. The

discrete frequencies fi ;n D fmax sin
h
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n� 1

2

�i
where fmax represents the maximum Doppler frequency.

When using the method of exact Doppler spread

(MEDS) with Ni � 7, the LCR QN� .rth/ of Q�.t/ approx-
imately fits the LCR N� .rth/ of a Rayleigh process.

Moreover, the ADF QT��.rth/ and the ADIF QT�C.rth/ of
Q�.t/ approximate very well the corresponding quantities of

a Rayleigh process T��.rth/D
q
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ˇ

�2
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2�2
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�
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, respectively. Therefore, QRB can

be approximated as

QRB �
T��.rth/

T�C.rth/
D exp

 
r2th

2�20

!
� 1 (3)

As observed, the second-order statistics of Q�.kTA/ are
determined by the parameter vector ‰ D .N1; N2; rth; �0;
fmax; TA/. The parameter rth can be assigned such
that it is much less than 1. In order to find other
parameters, we apply RB D QRB and REB D N� .rth/

to get fmax D
NpNEB.1CRB /
Tt
p
2  ln.1CRB /

. TA �
4�0

"
exp

 
r2th
2�2
0

!
�1

#
p
5 rthfmaxq

�1C
p
1C 10qs=3, where qs determines the maximum

measurement error of the LCR and chosen as 0.01.
Finally, the sampled deterministic process Q�.kTA/ can

be simulated within the necessary time interval Œ0; QTt�.
Here, QTt D Tt QNt=Nt with QNt denoting the required length
of the generated packet error sequence. The total num-
bers of the generated error bursts QNEB and error-free
bursts QNEFB can approximately be estimated from QNEB Dj
QNt
Nt

NEB

k
and QNEFB D

j
QNt
Nt

NEFB

k
, respectively. Here,

bxc stands for the floor of x. Consequently, an error burst
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length generator fEBrec with QNEB entries and an error-
free burst length generator eEFBrec with QNEFB entries
are derived.

3.2. The mappers

The lengths of the generated error bursts and error-free
bursts do not match the desired lengths properly. There-
fore, two mappers are designed in order to achieve good
fit to the desired burst error statistics. The number of error
bursts of length me in EBrec is denoted by NEB.me/ and
the number of error-free bursts of length mNe in EFBrec

is denoted by NEFB.mNe/. A modification to fEBrec and
eEFBrec must be done such that QNEB.me/ D ONEB.me/

and QNEFB.mNe/ D ONEFB.mNe/ hold, respectively. Here,

ONEB.me/ equals
j
QNt
Nt
NEB.me/

k
or
j
QNt
Nt
NEB.me/

k
C 1

for different error burst lengths me in order to fulfillPmB2
meDmB1

ONEB.me/D QNEB. Similarly, ONEFB.mNe/ equalsj
QNt
Nt
NEFB.mNe/

k
or
j
QNt
Nt
NEFB.mNe/

k
C1 for different error-

free burst lengths mNe to satisfy
Pm NB2
mNeDm NB1

ONEFB.mNe/ D

QNEFB.
In order to modify fEBrec, we first find the correspond-

ing values `1me
and `2me

in fEBrec to assure the following
conditions

`2me�1X
lD`1me

QNEB.l/ < ONEB.me/

and

`2meX
lD`1me

QNEB.l/� ONEB.me/ (4)

Then,

`2me�1X
lD`1me

QNEB.l/CN`2me
D ONEB.me/ (5)

The same idea applies to eEFBrec. It is clear that the
mappers renovate the l

�
`1me
� l � `2me

� 1
	

samples of the
fading process in each interval tome, which is the required
burst length.

3.3. The generation of packet error
sequences

The mapping process yields the correct fEBrec and eEFBrec,
from which the corresponding error burst and error-free
bursts, respectively, can be produced. Because error bursts
consist of clusters and gaps combined in sequence, it
is convenient to create parameter vectors AECGj (j D
1; 2; : : : ; QNEB), which reflect the construction of each error

burst from fEBrec as error cluster and gap lengths. There-
fore, all vectors ECGi corresponding to error bursts with
lengthme are found in EBrec. Thereafter, for all error bursts
with the same length me in fEBrec, random AECGj are allo-
cated from all possible vectors ECGi . This is the proce-
dure for generating the error bursts. Error-free bursts, on
the other hand, consist of zeros only. Therefore, they are
obtained by generating a series of zeros for each length in
eEFBrec. By combining generated error bursts with error-

free bursts in succession, an entire packet error sequence
is constructed.

Note that in the aforementioned three design steps of
the DPBGM, the first two steps (parametrization and map-
ping) are called the simulation set-up phase, and the last
step (generation of packet error sequences) is called the
simulation run phase.

4. SIMULATION RESULTS AND
DISCUSSIONS

In order to validate the efficiency and accuracy of the
DPBGM, we apply its mechanism to reference packet error
sequences. These error sequences were obtained from an
EGPRS simulator. The EGPRS system that we have used
is composed of a convolutional encoder; a burst inter-
leaver and a Gaussian minimum shift keying modulator at
the transmitter side; and a Gaussian minimum shift key-
ing demodulator, a viterbi equalizer, a burst de-interleaver,
a convolutional decoder, and a cyclic redundancy check
for error detection at the receiver side. The convolutional
decoder uses the coding scheme 3 (CS3) which is spe-
cific for the EGPRS [31]. According to [31], the utilized
propagation channel can be expressed as NAMEx, where
x represents the vehicle speed in km/h. NAME here repre-
sents the name of the underlying channel (e.g., a rural area
(RA) channel and a typical urban (TU) channel). More-
over, the EGPRS supports both ideal frequency-hopping
(IFH) and non-FH (NFH). IFH introduces good decorrela-
tion between time-division multiple access bursts. When
employing NFH, the data are transmitted using a GSM
carrier within a bandwidth of 200 kHz; therefore, the sys-
tem operates in narrowband channel. On the other hand,
when employing the IFH, the bandwidth could be 5 MHz
or more; hence, the channel is wideband. In this paper, the
following channels are utilized: RA 275 NFH, TU3 IFH,
TU3 NFH, and TU50 NFH [31]. The data were transmit-
ted as packets of Np D 456 bits with a transmission rate of
Fs D 270:8 kb/s. Each frame contains four time-division
multiple access bursts of 114 bits. The target packet error
sequences of length Nt D 1 � 106 were produced at
carrier-to-interference ratios of 5, 7, 8, 9, 11, 13, 15, and
17 dB. They are formulated by allotting a ‘0’ to a correctly
decoded packet and a ‘1’ to an error packet, which con-
tains at least one undecodable error. The total transmission
time is therefore Tt D NpNt=Fs D 1684 s, which is about
28 min.
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The performance criteria are evaluated by working out
burst error statistics. One generative model is preferred
over others if its burst error statistics fit very well those
of the reference packet error sequences obtained directly
from the EGPRS system. The burst error statistics that are
illustrated in this paper are defined as follows.

(1) G.mg/: the gap distribution (GD), which is defined
as the cumulative distribution function (CDF) of gap
lengths mg [28].

(2) P .0m0 j1/: the error-free run distribution (EFRD),
which is the probability that an error is followed
by at least m0 error-free packets [9]. The EFRD
can be calculated from the GD [28]. Obviously,
P .0m0 j1/ is a monotonically decreasing function
of m0 such that P .00j1/ D 1 and P .0m0 j1/ ! 0

as m0!1.
(3) P .1mc j0/: the error cluster distribution (ECD),

which is the probability that a correct packet is fol-
lowed by mc or more consecutive packets in error
[9].

(4) PEB.me/: the error burst distribution (EBD), which
is the CDF of error burst lengths me.

(5) PEFB.mNe/: the error-free burst distribution (EFBD),
which is the CDF of error-free burst lengths mNe.

(6) P .m; n/: the block error probability distribution
(BEPD), which is the probability that at least m out
of n packets are in error. This statistic is important
for determining the performance of automatic repeat
request protocols [13].

(7) Q.l; n/: the block burst probability distribution
(BBPD), which is the probability of an error burst of
length l occurring in a block of length n. For only
this statistic, the length of a burst in a block of n
digits is the number of zeros and ones between the
first error to the last error in the block (both errors
included) irrespective of the nature of the digits in
between [3].

(8) Cov.l/: the normalized covariance function [20].
(9) 	.
k/: the packet error correlation function

(PECF), which is the conditional probability that
the 
kth packet following an error packet is also
in error. The PECF represents the burstiness of the
channel [2,3].

(10) GCF : the gap correlation function, which is the
conditional probability that the 
r th gap following
a short (long) gap is also short (long) [3].

(11) MGD: the multigap distribution, which is the CDF
of r consecutive gaps, considered as a single param-
eter, which are separated by one or more consecu-
tive errors [3]. The gap here is different from the
one adopted before, it is defined here as a string
of consecutive zeros between two errors and hav-
ing a length equal to one plus the number of zeros
between the two errors. It can be seen that the mini-
mum value for a gap length is one, occurring in case
of consecutive errors.
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Figure 1. The error-free run distributions of the descriptive
model and three generative models. DPBGM, deterministic
process-based generative model; BWHMM, Baum–Welch-
based hidden Markov model; SFM, simplified Fritchman’s

model.

The obtained packet error sequences are applied to the
DPBGM to generate error sequences with length QNt D

1:2 � 106. In this paper, we show only the results of
TU3 IFH at carrier-to-interference ratio of 11 dB. The
corresponding FER is 0.013. The value of � can be
found from Figure 1 when the curve becomes slightly
constant. The value of � is chosen to be 50. Conse-
quently, the value of NEB D 3429 and RB D 0:052.
The value of qs is 0.01; hence, the parameter vector for
the underlying sampled deterministic process is ‰ D

.9; 10; 0:09; 0:2255; 300:85 Hz, 0.0394 ms).
For comparison purposes two other generative mod-

els, namely SFM and BW-based HMM (BWHMM) have
been implemented. For the SFM, The transition probability
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SFM, simplified Fritchman’s model.
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matrix of a K-state is calculated by expressing the EFRD
P .0m0 j1/ as the sum of K � 1 exponentials with suitable
weighting coefficients [9]. This procedure has to involve
curve fitting techniques and is called the simulation set-up
phase of an SFM. From the transition probability matrix of
an SFM, packet error sequences can be generated for any
desired length, which is considered as the simulation run
phase of an SFM. In our case, the fitting of P .0m0 j1/ is
achieved by using five exponentials. Our experiments have
shown that no better performance can be obtained from
SFMs with more than six states.

In the case of BWHMM, the simulation set-up phase
involves extracting the error bursts from the error sequence.
The error bursts are then divided into smaller blocks of
length L. With the maximum number of errors in L,
the error bursts are classified. The symbols represent the
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number of errors in each block, which are considered as
subclasses. These symbols are used in the training process
with the BW algorithm in order to find the optimal val-
ues of the transition probabilities between the subclasses.
Afterwards, error bursts can be generated in each class.
Finally, the classes of error bursts are combined with one
class for error-free bursts. The last phase is called the simu-
lation run phase. In our simulations, the number of classes
is 3, and the total number of states is 100. The chosen value
of L is 2.

Figures 1–12 depict the behavior of the descrip-
tive model and the generative models of the DPBGM,
BWHMM, and SFM in terms of EFRDs, GDs, ECDs,
EBDs, EFBDs, BEPDs, BBPDs, NCs, PECFs, GCFs,
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model.

MGDs against the multigap length of order 10, and MGDs
against the multigap length of order 100, respectively. In
general, the DPBGM outperforms the SFM and BWHMM
in terms of accuracy by fitting the descriptive model well
for all the defined burst error statistics. An exception
is the MGD against the multigap length of order 100
(Figure 12), for which the SFM behaves the best.
However, the SFM fails to describe some of the desired
burst error statistics, as can be seen from the large
deviations for ECD (Figure 3), EBD (Figure 4), BEPD
(Figure 6), NCF (Figure 8), and PECF (Figure 9), whereas
it matches satisfactorily the descriptive model for EFRD
(Figure 1), GD (Figure 2), EFBD (Figure 5), BBPD
(Figure 7), and MGDs (Figures 11 and 12). The BWHMM
fails to characterize the GD (Figure 2), ECD (Figure 3),

100 101 102 103 104
0

0.2

0.4

0.6

0.8

1
Descriptive model
DPBGM
BWHMM
SFM

Δ k+1

P
ac

ke
t e

rr
or

 c
or

re
la

tio
n 

fu
nc

tio
n,

 ρ
(Δ

 k
) 

Figure 9. The packet error correlation functions of the descrip-
tive model and three generative models. DPBGM, deterministic
process-based generative model; BWHMM, Baum–Welch-
based hidden Markov model; SFM, simplified Fritchman’s

model.

101100 102 104103
0

0.2

0.4

0.6

0.8

1
G

ap
 c

or
re

la
tio

n 
fu

nc
tio

n
Descriptive model
DPBGM
BWHMM
SFM

Δ r+1

Figure 10. The gap correlation functions of the descriptive
model and three generative models. DPBGM, deterministic
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model.

BEPD (Figure 6), NC (Figure 8), and PECF (Figure 9)
adequately, whereas the performance is acceptable for the
rest burst error statistics. This is because the BWHMM is
best designed to be used for error sequences having error
bursts with bell-shaped error density, while this property is
difficult to be found in packet error sequences. Nonethe-
less, the BWHMM shows better performance than the
SFM in terms of ECD (Figure 3), EBD (Figure 4), EFBD
(Figure 5), BEPD (Figure 6), and PECF (Figure 9), but is
no better than the SFM for the rest burst error statistics.

In terms of model complexity and simulation efficiency,
all the three generative models require two phases: sim-
ulation set-up phase and simulation run phase. For the
set-up phase, all the three models have high complexity and
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require a long simulation time, which depends on individ-
ual experiences and are difficult to compare. For the simu-
lation run phase, the DPBGM has the minimum complexity
followed by the BWHMM and then the SFM. Using a PC
with a 2.4-GHz processor, the DPBGM, BWHMM, and
SFM need 0.422, 1.125, and 3.422 s, respectively. Thus,
the DPBGM outperforms the BWHMM and SFM in terms
of accuracy as well as efficiency.

5. CONCLUSIONS

We have established a general procedure for developing a
fast binary packet-level generative model with a properly
parameterized and sampled deterministic process followed

by a threshold detector and two parallel mappers. It has
been demonstrated that in general, the DPBGM exhibits
excellent conformity with the descriptive model especially
for the most important burst error statistics such as the
PECF and BEPD, which are used in the design and per-
formance evaluation of the media access control layer, link
control layer, and high-layer wireless communication pro-
tocols. The SFM and BWHMM fail to describe most of
the burst error statistics and notably the important ones.
The SFM outperforms the BWHMM in terms of the EFRD
and MGD but is worse than the DPBGM for the same
statistics. The BWHMM performs better than the SFM
in terms of ECD, EBD, EFBD, BEPD, and PECF, but
not better than the DPBGM. The DPBGM has shown its
superiority in terms of efficiency as well. The conclusions
have been substantiated through performance simulation of
coded EGPRS systems producing packet error sequences.
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