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Abstract—Energy detection (ED) has been widely used for
detecting unknown deterministic signals in many wireless com-
munication applications, e.g., cognitive radio, and ultra-wideband
(UWB). However, the performance analysis of ED over slow
fading channels is cumbersome, because it is difficult to derive
closed-form expressions for the average probability of detection
involving the generalised Marcum Q-function and the log-normal
distribution. In this letter, we derive an approximation of the
average probability of detection over a slow fading channel by
replacing the log-normal distribution with a Wald distribution.
In addition, we analyze the detection performance of the ED
using a square-law combining scheme over multiple independent
and identically distributed slow fading channels.

Index Terms—Energy detection, slow fading, cognitive radio,
UWB, Wald distribution.

I. INTRODUCTION

S INCE Urkowitz’s seminal paper [1], energy detection (ED,
also known as radiometry) has been widely used for

detecting unknown deterministic signals in many applications.
For example, [2] employed ED for detecting the presence
of ultra-wideband (UWB) signals, and [3] used ED to study
the effect of the collaboration among cognitive radios. ED is
commonly used not only due to its low computational and
implementation complexity, but also because it does not need
any prior knowledge of signals.

A non-fading additive white Gaussian noise (AWGN) chan-
nel is usually assumed when studying the performance of
ED. However, in wireless communication applications, fading
occurs because of multipath propagation and shadowing. The
detection performance of ED over a variety of fading channels
has gained interest recently in [4]–[6]. In [4], Digham et al.
evaluated the performance of ED over Nakagami-𝑚 fading
channels and Rician fading channels. The influence of the
slow fading on ED was numerically studied in [7], but without
a closed-form expression. The challenge of deriving closed-
form expressions for the average probability of detection stems
from the fact that it involves both the generalised Marcum Q-
function and the log-normal distribution.
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Fig. 1. Block diagram of the energy detector.

The contribution in this study is twofold. First, we give an
approximation of the average probability of detection for the
slow fading channel, by using the Wald distribution to replace
the log-normal distribution. Second, we analyze the detection
performance of the ED using a square-law combining (SLC)
scheme over multiple independent and identically distributed
(i.i.d.) slow fading channels, and derive a computationally
tractable expression.

This paper is organized as follows. We briefly introduce
the system model in Section II. In Section III, we derive
an expression for the average probability of detection over a
single slow fading channel. The detection performance of the
ED using SLC over multiple slow fading channels is given
in Section IV. Simulation results are presented in Section V,
with conclusions given in Section VI.

II. SYSTEM MODEL

A block diagram of an energy detector is shown in Fig. 1.
The received signal, 𝑟(𝑡), is filtered by a bandpass filter (BPF),
followed by a squaring device for measuring received energy,
and an integrator that controls the observation interval, 𝑇 . In
order to decide whether the signal is present or not, the output
of the integrator, 𝑌 , will act as a test statistic, and will be
compared with a predetermined threshold, 𝜆. The binary signal
detection problem can be formulated as hypothesis test with
𝐻0 (signal not present) or 𝐻1 (signal present),

𝐻0 : 𝑟(𝑡) = 𝑛(𝑡),

𝐻1 : 𝑟(𝑡) = ℎ(𝑡) 𝑠(𝑡) + 𝑛(𝑡), (1)

where ℎ(𝑡) denotes the complex channel gain between the
transmitter and the receiver, 𝑠(𝑡) denotes the bandlimited
signal coming from the transmitter of unknown modulation
format, and 𝑛(𝑡) is AWGN.

Following [1], the test statistic, 𝑌 , has the following distri-
bution,

𝑌 ∼
{

𝜒2
2𝑢, 𝐻0

𝜒2
2𝑢(2𝛾), 𝐻1

(2)

where “∼” means “distributed as”, 𝛾 is the signal-to-noise
ratio (SNR) at the receiver, and 𝜒2

2𝑢 and 𝜒2
2𝑢(2𝛾) denote the

central and non-central chi-square distributions, respectively.
Both distributions have the same degree of freedom (DoF),
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2𝑢 (𝑢 is the time bandwidth product), and the latter one has
a non-central parameter 2𝛾.

The probability density function (PDF) of 𝑌 is given as [4]

𝑓𝑌 (𝑦) =

{
1

2𝑢⋅Γ(𝑢) ⋅ 𝑦𝑢−1 ⋅ 𝑒− 𝑦
2 , 𝐻0

1
2 ⋅ ( 𝑦

2𝛾 )
𝑢−1
2 ⋅ 𝑒− 2𝛾+𝑦

2 ⋅ 𝐼𝑢−1(
√
2𝛾𝑦), 𝐻1

(3)
where Γ(𝑎) is the gamma function and 𝐼𝑣(𝑎) is the 𝑣𝑡ℎ order
modified Bessel function of the first kind.

For a non-fading AWGN channel, the probabilities of false
alarm and detection are given in [4] as below

𝑃𝑓𝑎 = 𝑃𝑟(𝑌 >𝜆∣𝐻0) =
Γ(𝑢, 𝜆/2)

Γ(𝑢)
, (4)

𝑃𝑑 = 𝑃𝑟 (𝑌 >𝜆∣𝐻1) = 𝑄𝑢(
√
2𝛾,

√
𝜆), (5)

where Γ(𝑎, 𝑥) denotes the incomplete gamma function given
by Γ(𝑎, 𝑥) =

∫∞
𝑥 𝑡𝑎−1𝑒−𝑡𝑑𝑡, and 𝑄𝑢(𝑎, 𝑥) denotes the gener-

alised Marum Q-function given by

𝑄𝑢(𝑎, 𝑥) =
1

𝑎𝑢−1

∫ ∞

𝑥

𝑡𝑢𝑒−
𝑎2+𝑡2

2 𝐼𝑢−1(𝑎𝑡)𝑑𝑡. (6)

Another form of the generalised Marcum Q-function is
given in (4.74) of [8] as

𝑄𝑢(
√

2𝛾,
√
𝜆) =

∞∑
𝑛=0

𝑒−𝛾 𝛾
𝑛

𝑛!

𝑛+𝑢−1∑
𝑙=0

𝑒−
𝜆
2

(
𝜆
2

)𝑙
𝑙!

. (7)

With the aid of (8.352-2) in [9], we can rewrite above equation
as

𝑄𝑢(
√
2𝛾,

√
𝜆) =

∞∑
𝑛=0

𝛾𝑛

𝑛!

Γ(𝑛+ 𝑢, 𝜆2 )

Γ(𝑛+ 𝑢)
𝑒−𝛾 . (8)

III. LOCAL ENERGY DETECTION IN A SLOW FADING

CHANNEL

When experiencing a fading channel, 𝑃𝑓𝑎 in (4) will re-
main the same, since it is independent of the SNR. On the
other hand, when the channel gain, ℎ(𝑡), varies, the average
probability of detection can be calculated by averaging 𝑃𝑑 in
(5) over the SNR distribution as

𝑃𝑑=

∫ ∞

0

𝑃𝑑(𝛾, 𝜆)𝑓(𝛾)𝑑𝛾=

∫ ∞

0

𝑄𝑢(
√
2𝛾,

√
𝜆)𝑓(𝛾)𝑑𝛾, (9)

where 𝑓(𝛾) denotes the PDF of the SNR in a fading channel.
In terrestrial land-mobile wireless communication systems,

the received SNR may be affected by the effect of shadowing
due to objects obstructing the propagation path [8]. Empirical
measurements showed that the received power fluctuates with
a log-normal distribution about the area-mean power for
various outdoor and indoor environments [7], [10]. The PDF
of the SNR is given by [8]

𝑓(𝛾) =
𝜉√
2𝜋𝜎𝛾

exp

(
− (10 log10 𝛾 − 𝜇)2

2𝜎2

)
, 𝛾 > 0, (10)

where 𝜉 = 10/ ln(10), 𝜇 (dB) denotes the area-mean SNR,
and 𝜎 (dB) denotes the standard deviation of 10 log10 𝛾. To the
best of our knowledge, there exists no closed-form expression
for the average probability of detection when we substitute (8)
and (10) into (9). The log-normal distribution can be closely
approximated by the Wald distribution (also known as the

inverse Gaussian distribution) [11], [12], whose PDF is given
by

𝑓(𝛾) =

√
𝜂

2𝜋
𝛾−3/2 exp

(
−𝜂(𝛾 − 𝜃)2

2𝜃2𝛾

)
, 𝛾 > 0, (11)

where 𝜃 = E(𝛾) denotes the expectation of 𝛾, and 𝜂 is the
shape parameter. The variance of 𝛾 is 𝜃3

𝜂 , i.e., Var(𝛾) = 𝜃3

𝜂 .
We propose to use the Wald distribution to approximate the
log-normal distribution. In order to do so, by the method of
moments we relate parameters 𝜂, 𝜃 with 𝜇, 𝜎 as below

𝜃 = exp

(
𝜇

𝜉
+

𝜎2

2𝜉2

)
,

𝜂 =
𝜃

exp(𝜎
2

𝜉2 )− 1
. (12)

Substituting (8) and (11) into (9), with manipulation we
obtain

𝑃𝑑,𝑆ℎ𝑎 =

√
𝜂

2𝜋
𝑒

𝜂
𝜃

∞∑
𝑛=0

Γ(𝑛+𝑢, 𝜆2 )

Γ(𝑛+𝑢)𝑛!

×
∫ ∞

0

𝛾𝑛−
3
2 𝑒(−

𝜂/2
𝛾 − 2𝜃2+𝜂

2𝜃2
𝛾)𝑑𝛾. (13)

Using (3.471-9) in [9] for calculating the integral, we obtain

𝑃𝑑,𝑆ℎ𝑎 =

√
2𝜂

𝜋
𝑒

𝜂
𝜃

∞∑
𝑛=0

Γ(𝑛+ 𝑢, 𝜆2 )

Γ(𝑛+ 𝑢)𝑛!

×
(√

𝜂𝜃2

2𝜃2+𝜂

)𝑛−1
2

K𝑛−1
2

(√
𝜂(2𝜃2 + 𝜂)

𝜃

)
, (14)

where K𝑛− 1
2
(𝑎) denotes the modified Bessel function of the

second kind with order 𝑛− 1
2 .

The truncation error, 𝑇𝑒, will be involved when using
finite summations, 𝑁 , to replace infinite summations in (14).
Because Γ(𝑛,𝑏)

Γ(𝑛) = 𝑒−𝑏
∑𝑛−1

𝑖=0
𝑏𝑖

𝑖! can be viewed as the cumu-
lative distribution function for a Poisson random variable of
𝑋 ∼ Poi(𝑏), which results in Γ(𝑛,𝑏)

Γ(𝑛) ≤ 1, the truncation error
is bounded by

𝑇𝑒≤
√
2𝜂

𝜋
𝑒

𝜂
𝜃

∞∑
𝑛=𝑁+1

(√
𝜂𝜃2

2𝜃2+𝜂

)𝑛−1
2

𝑛!
K𝑛−1

2

(√
𝜂(2𝜃2+𝜂)

𝜃

)
,

=1−
√
2𝜂

𝜋
𝑒

𝜂
𝜃

𝑁∑
𝑛=0

(√
𝜂𝜃2

2𝜃2+𝜂

)𝑛−1
2

𝑛!
K𝑛−1

2

(√
𝜂(2𝜃2+𝜂)

𝜃

)
. (15)

IV. ENERGY DETECTION OVER SLOW FADING CHANNELS

The detection result of a single receiver may not be suf-
ficiently reliable, which might be due to either the effect of
fading or a low SNR. In such a scenario, diversity schemes
are often employed because they can combat the severe fading
[8]. Using SLC, the energy vectors, 𝑌1, 𝑌2, ⋅ ⋅ ⋅ , 𝑌𝐿, from 𝐿
distributed receivers are gathered at a fusion centre (FC),
where the test statistic, 𝑌𝑠𝑙𝑐 =

∑𝐿
𝑖=1 𝑌𝑖 is formed [13]. When

these 𝐿 fading channels are i.i.d., and all branches have the
same noise variance, the fused energy, 𝑌𝑠𝑙𝑐, has the following
distribution,

𝑌𝑠𝑙𝑐 ∼
{

𝜒2
2𝐿𝑢(2𝛾𝑠𝑙𝑐), 𝐻1

𝜒2
2𝐿𝑢, 𝐻0,

(16)
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where 𝛾𝑠𝑙𝑐 =
∑𝐿

𝑖=1 𝛾𝑖 is given by [13].
In the case of non-fading AWGN channels, the probabilities

of false alarm and detection under a SLC scheme can be given
as below

𝑃 ′
𝑓𝑎 =

Γ(𝐿𝑢, 𝜆/2)

Γ(𝐿𝑢)
, (17)

𝑃 ′
𝑑 = 𝑄𝐿𝑢(

√
2𝛾𝑠𝑙𝑐,

√
𝜆),

=
∞∑

𝑛=0

𝛾𝑛𝑠𝑙𝑐
𝑛!

Γ(𝑛+ 𝐿𝑢, 𝜆2 )

Γ(𝑛+ 𝐿𝑢)
𝑒−𝛾𝑠𝑙𝑐 . (18)

When the signal experiences fading over 𝐿 channels, the
average probability of false alarm will remain the same as
(17), and the average probability of detection can be evaluated
by averaging 𝑃 ′

𝑑 over the SNR distribution as

𝑃 ′
𝑑 =

∫ ∞

0

𝑃 ′
𝑑(𝛾𝑠𝑙𝑐, 𝜆)𝑓(𝛾𝑠𝑙𝑐)𝑑𝛾𝑠𝑙𝑐,

=

∫ ∞

0

𝑄𝐿𝑢(
√

2𝛾𝑠𝑙𝑐,
√
𝜆)𝑓(𝛾𝑠𝑙𝑐)𝑑𝛾𝑠𝑙𝑐. (19)

In slow fading channels, the PDF of the SNR in the
node 𝑖, 𝛾𝑖, can be approximated by a Wald distribution. When
all fading channels are stationary and i.i.d., the condition
𝜂𝑖

𝜃2
𝑖
= E(𝛾𝑖)

Var(𝛾𝑖)
=𝑏 (constant) can be satisfied. Thus, the combined

SNR under the SLC scheme, 𝛾𝑠𝑙𝑐, will also follow the Wald
distribution [14]. The PDF of 𝛾𝑠𝑙𝑐 can be easily obtained by
replacing each 𝜂 with 𝐿𝜂, each 𝜃 with 𝐿𝜃, and each 𝛾 with
𝛾𝑠𝑙𝑐 in (11). Using a similar method to that of the single
slow fading channel, we can obtain the average probability
of detection as below

𝑃 ′
𝑑,𝑆ℎ𝑎 =

√
2𝐿𝜂

𝜋
𝑒

𝜂
𝜃

∞∑
𝑛=0

Γ(𝑛+ 𝐿𝑢, 𝜆2 )

Γ(𝑛+ 𝐿𝑢)𝑛!

×
(√

𝜂𝜃2𝐿2

2𝐿𝜃2+𝜂

)𝑛−1
2

K𝑛−1
2

(√
𝜂(2𝐿𝜃2+𝜂)

𝜃

)
. (20)

The above result can also be obtained by replacing each 𝜂
with 𝐿𝜂, each 𝜃 with 𝐿𝜃, and each 𝑢 with 𝐿𝑢 in (14).

V. SIMULATION RESULTS

Receiver operating characteristic (ROC) analysis has been
widely used in the signal detection theory. It is an ideal
technique to quantify the tradeoff between the probability of
detection and the probability of false alarm. In the simulation,
we use complementary ROC curves (𝑃𝑓𝑎 vs 1−𝑃𝑑) to show
the detection performance of ED over slow fading channels.
As we used the Wald distribution to approximate the log-
normal distribution for deriving the average probability of
detection, we compare the theoretical result in (14) with
simulated result in Fig. 2. From both figures, we can find that
the theoretical results closely fit the experimental results. In
addition, we can see that, when the average probability of false
alarm decreases, the approximation error slightly increases.
This phenomenon may stem from the long right tail of the
long-normal distribution, which is difficult to match. As shown
in the right-hand figure, the mismatch becomes larger when
the shadow standard deviation, 𝜎, becomes larger (equivalent
to a longer right tail in the log-normal distribution).
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Simulated: σ=3 dB,

Theoretical:  σ=3 dB

Simulated: σ=4 dB

Theoretical:  σ=4 dB

Simulated: σ=5 dB

Theoretical:  σ=5 dB

Simulated: μ=5 dB,

Theoretical:  μ=5 dB

Simulated: μ=10 dB

Theoretical:  μ=10 dB

Fig. 2. Complementary ROC curves of energy detection over a slow fading
channel with (a) the shadow standard deviation 𝜎 = 4 dB, and (b) the area-
mean SNR 𝜇 = 10 dB, compared with theoretical result in (14).

VI. CONCLUSIONS

In this study, we have obtained a computationally tractable
expression for the average probability of detection over a
slow fading channel, by using the Wald distribution to replace
the log-normal distribution. Using SLC, we have studied the
detection performance of ED over i.i.d. slow fading channels.
It has been shown that the theoretical expression closely match
the experimental results. Since the effect of the long right tail
in the log-normal distribution, the mismatch becomes larger
when the shadow standard deviation increases.
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