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Summary

In this paper, we analyze the impacts of different frame types on the self-similarity and burstiness characteristics
of the aggregated frame traffic in a real 802.11 wireless local area network (WLAN). We find that the impacts
of different frame types are related to the mean frame sizes and the proportions of specified frame types in the
aggregated frame traffic. Furthermore, we propose an analytical model to capture the relationship of self-similarity
characteristics between the aggregated frame traffic and different frame types. These new results provide an
insight of frame traffic characteristics and some practical guidelines for developing new efficient algorithms to
improve the common medium utilization and system throughput performance. Copyright © 2009 John Wiley
& Sons, Ltd.
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1. Introduction

The past decade has witnessed the great success
story of IEEE 802.11 wireless local area networks
(WLANs), which have been deployed and used by
millions of users worldwide. It is very important
to investigate and understand the performance and
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behavior of 802.11 wireless networks in real world,
which mainly depend on a network’s traffic pattern
and characteristics [1,2]. Therefore, real network
traffic measurement and characteristics analysis are
the keys to develop an accurate traffic model and a
series of efficient schemes for system performance
improvement [3,4].
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Most previous work was based on the traffic traces
collected at the wired segments of access points
(APs) by using periodic simple network management
protocol (SNMP) queries of AP management infor-
mation bases (MIBs) [5,6], which are identified as
the IP packet traffic. In Reference [7], wireless IP
packet traffic is collected from an ad hoc network
and investigated to validate the self-similar property
in this wireless IP traffic trace. These traces, however,
do not record the traffic observed ‘in the air’ and
are lack of some important information in media
access control (MAC) layer. According to the IEEE
802.11 standards [8], all frames in the MAC layer are
categorized into management, control, and data frames.
The management and control frames need not to be
sent to the network layer, so the data contained in these
frames never exists in the IP packet traffic traces. In
addition, the data frames in the MAC layer contain both
successful and unsuccessful data (re)transmissions.
The latter, however, do not exist in the IP packet traffic
traces. As a result, the characteristics of IP packet traffic
cannot reflect the real behaviors of 802.11 wireless
networks in the air and we need to analyze the MAC-
layer frame traffic to fully evaluate and understand
the real performance and behaviors of 802.11 wireless
networks.

Some related work on the MAC-layer frame traffic
has been reported in References [9–13]. Specifically,
the 802.11 WLAN frame traffic was analyzed in
Reference [9]. It was found that retransmission
and management frames account for about 38%
of the total frame traffic. Management and control
frames are together called overhead frames, which
account for 54% of the total frame traffic. The
frame loss process in an 802.11 wireless network
was studied in Reference [10] and some possible
causes of intermediate frame loss were identified and
discussed. The correlation between traffic congestion
and data link layer properties, such as retransmission
frames, frame sizes, and data rates, was investigated
in Reference [11]. Some ideas and new schemes
for improving network performance were proposed
in Reference [12]. In Reference [13], we studied
aggregated frame traffic collected from a real 802.11
wireless network and identified the second-order self-
similar characteristic in frame traffic.

The above related work concentrates on the
aggregated frame traffic consisting of management,
control, and data frames, whose individual impacts on
overall traffic characteristics and system performance
are unknown and therefore the focus in this research.
Specifically, this paper fully investigates the impacts

of different types of frames on the characteristics
of the aggregated frame traffic, which is collected
at an international conference. Our analytical results
show that data frame traffic and control frame traffic
both strengthen the self-similarity and burstiness of
the aggregated frame traffic, while the corresponding
impact of management frame traffic on the aggregated
frame traffic varies in different session periods.
Based on this analysis, a novel model is derived to
capture the relationship, in terms of the self-similarity
characteristic, between the aggregated frame traffic and
different types of individual frame traffic.

The rest of the paper is organized as follows.
In Section 2, the frame type and measurement
environment are introduced firstly, and then the main
characteristics of frame traffic are described and
analyzed. The impacts of different types of frame traffic
on the characteristics of the aggregated frame traffic are
investigated in Section 3. A novel model on the self-
similarity characteristic of frame traffic is proposed in
Section 4. Finally, Section 5 concludes this paper.

2. Primary Knowledge

2.1. Frame Type and Measurement
Environment

According to the IEEE 802.11 standard [7], there
are three basic frame types, i.e., management frame,
control frame, and data frame. Each frame type has
several defined subtypes to execute the corresponding
functions. For instance, the management frame type
consists of association request and response frame,
reassociation request and response frame, disasso-
ciation frame, authentication and deauthentication
frame, probe request and response frame, and beacon
frame. The control frame type includes request-to-
send (RTS) frame, clear-to-send (CTS) frame, and
acknowledgement (ACK) frame. The data frame type
includes data frame, null function frame, and so on.
Besides these three basic frame types, there is a special
frame type, i.e. retransmission frame, which is the
transmission failure frame in the management frames
or data frames. This paper focuses on the characteristics
of these three basic frame types and retransmission
frames.

The frame traffic collection environment is an
open wireless network provided to over 1100
participants at the 62nd Internet Engineering Task
Force (IETF) Conference held in Minneapolis,
Minnesota, USA, from 6 to 11 March 2005. This
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wireless network comprising 38 APs was deployed on
three adjacent floors of the venue, operating in the IEEE
802.11b infrastructure mode on three non-overlapping
frequency channels. The frame traffic trace used in
this paper was collected at one of three floors by the
method of vicinity sniffing [14]. Vicinity sniffing is
one of wireless monitoring technologies, and it can
capture most wireless frames in the air by merging
a few sniffers and their placements. The considered
traffic collection environment includes seven meeting
rooms which are divided from a big single room with 12
APs [12]. This vicinity sniffing framework consisted of
three sniffers, i.e. IBM R32 Think Pad laptops, which
are distributed at that big single room. Each sniffer
was equipped with a Netgate 2511 PCMCIA 802.11b
radio. Radios were configured to capture packets in
a special operating mode called the RFMon mode.
The RFMon mode enables the capture of regular
data frames as well as IEEE 802.11b management
frames.

2.2. Characteristics of Frame Traffic

Two primary characteristics of 802.11 frame traffic
to be studied in this paper are self-similarity and
burstiness, which are briefly described as follows.

2.2.1. Self-similarity

Self-similarity, in a strict sense, means that the
statistical properties (e.g., all moments) of a random
process do not change for all aggregation levels. That
is, the random process ‘looks the same’ if one zooms in
time ‘in and out’ in the process. They are defined by the
requirement that any random vector of Z(i) at different
times has a joint distribution which is identical to that of
a rescaled and normalized version of the random vector.
For one-dimensional distributions, this is simply

Z(t)
d∼ a−HZ(at) (1)

where α is the rescaled value and H ∈ [0, 1] denotes
the self-similarity characteristic parameter or the Hurst
parameter. Larger values of H correspond to stronger
self-similarity, which makes the aggregated process
looks more similar with the original process.

2.2.2. Burstiness

Burstiness, a significant frame traffic characteristic in
wireless networks, means the lack of smoothness. The

burstiness of the frame traffic has a great effect on
conflict of medium access and traffic congestion in
the MAC layer. There are two kinds of burstiness:
temporal burstiness and amplitude burstiness. The
former is derived from the long-time dependence and
can be described by the self-similarity parameter.
The latter presents the fluctuation degree of frame
traffic in short-time scale, which can be denoted
by the heavy-tailed property. Heavy-tailed property
represents a power-law behavior in the tail of the
distribution of a random process. A probability
distribution is heavy-tailed with tail index 0 < α <

2 if the tail of the distribution follows a power-
law P [X > x] ∝ cx−α for a large x. Smaller values
of α correspond to the stronger burstiness. So α is
called the burstiness characteristic parameter. Heavy-
tailed property, by definition, implies that a ‘large’
portion of the probability mass moves to the tail
of the distribution, as α decreases. It means some
small probability events cannot be ignored in the
total distribution of the random process. In the sense
of network traffic, scarce burstiness frame traffic
can seriously impact the characteristics of the total
frame traffic. In the following, we will focus on the
amplitude burstiness of frame traffic, and the burstiness
is regarded as the amplitude burstiness if without any
specification.

3. Characteristics Analysis of Frame
Traffic

The 62nd IETF Conference was held from 6 to
11 March 2005 and each day was divided into
morning, afternoon, and evening sessions. We select
one morning session for illustration, since the traffic
data at other sessions gives identical results. The
selected traffic data were collected from 09:16 a.m.
to 12:34 p.m. on 10 March 2005. Considering the
behaviors of users in the session, three data sets at
the beginning, middle, and end of the session were
selected for detailed analysis. These three data sets
were collected from 09:17 a.m. to 09:47 a.m., from
10:00 a.m. to 10:30 a.m., and from 11:50 a.m. to
12:20 p.m.

3.1. Characteristics Analysis Method

To analyze the impact of different types of frame traffic
on the aggregated frame traffic, we first calculate the
overall characteristic parameters in these three data
sets, and then recalculate the corresponding parameters
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after removing a specific traffic type. The impact of
this specified frame traffic on the aggregated frame
traffic can be evaluated by identifying and analyzing the
differences in the calculated characteristic parameters.
In order to minimize the measurement deviation, the
differences of characteristic parameters are calculated
at three time scales, i.e. 0.01, 0.05, and 0.1 s time
scales. The mean values will be used to indicate
the impacts of the specified frame traffic type on
the overall traffic characteristics. Particularly, the Hurst
and α characteristic parameters are calculated for
investigating the impact of specified frame traffic type
on the self-similarity and burstiness of the aggregated
frame traffic. The impact parameters are calculated by
the following formulas:

�Hurst,frame type = 1

3

∑

time scale

(
Xtime scale,frame type

−Xtime scale,aggregated frame
)

(2)

�α,frame type = 1

3

∑

time scale

(
Ytime scale,frame type

−Ytime scale,aggregated frame
)

(3)

�Hurst,frame type is defined as the self-similarity
impact parameter. A positive value of the self-
similarity impact parameter means that the specified
frame traffic weakens the self-similarity of aggregated
frame traffic, and vice versa. �α,frame type is defined
as the burstiness impact parameter. A positive value
of the burstiness impact parameter means that the
specified frame traffic strengthens the burstiness of
aggregated frame traffic, and vice versa. The parameter
of frame type denotes the type of frame traffic,
which includes the management frame, the control
frame, the data frame, and the retransmission frame.
X and Y are variable values measured from the
specified frame traffic at different time scales, and the
parameter of time scale denotes the time scale used for
measuring the frame traffic, taking values from the set
{0.01,0.05,0.1} in these experiments. The parameter
of aggregated frame means that the variable value is
measured from the total frame traffic.

3.2. Impact of Management Frames

Firstly, we try to investigate the impact of the
management frame traffic on the aggregated frame
traffic, and the self-similarity and burstiness impact

Fig. 1. Impact parameters of the management frame traffic at
different session periods.

parameters are calculated in different session periods.
From the solid line in Figure 1, we see the self-
similarity impact parameter is positive in the beginning
and end session periods, but it is negative in the middle
session period. From the dashed line in Figure 1,
the burstiness impact parameter is negative in the
beginning and end session periods, but it is positive
in the middle session period. These results imply
that the management frame traffic weakens the self-
similarity and burstiness of the aggregated frame
traffic in the beginning and end session periods, but it
strengthens these two parameters in the middle session
period.

3.3. Impacts of Control Frames, Data
Frames, and Retransmission Frames

The impacts of the control, data, and retransmission
frame traffic on the aggregated frame traffic are
investigated by the corresponding self-similarity and
burstiness impact parameters at the beginning, middle,
and end of the selected session, as illustrated in
Figures 2–4, respectively. It is clear that the self-
similarity impact parameters are always negative
in all session periods and the burstiness impact
parameters are always positive in all session periods.
These results imply that the control frame traffic,
the data frame traffic, and the retransmission frame
traffic all strengthen the self-similarity and burstiness
of the aggregated frame traffic in the all session
periods.

3.4. Characteristic Analysis

According to the measurement results of impact
parameters from different types of frame traffic,
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Fig. 2. Impact parameters of the control frame traffic at
different session periods.

Fig. 3. Impact parameters of the data frame traffic at different
session periods.

Fig. 4. Impact parameters of the retransmission frame traffic
at different session periods.

the control frame traffic, data frame traffic, and
retransmission frame traffic always strengthen the
self-similarity and burstiness of the aggregated
frame traffic in all session periods. However, the
management frame traffic has various impacts on the
aggregated frame traffic in different session periods. To
investigate the potential reasons of these measurement

Fig. 5. Proportion of different types of the frame traffic at
different session periods.

Fig. 6. Mean size of different types of frames.

results, we calculated the mean frame size and the
proportion changes of the specified frame traffic in
different session periods. The corresponding results are
illustrated in Figures 5 and 6.

Figure 5 demonstrates that the proportion of the
management frame traffic is obviously larger than
the proportion of other types of frame traffic in the
beginning and end session periods. More precisely,
the proportion of the management frame traffic
accounts for 56.8% in the beginning session period
and 46.7% in the end session period, while the
proportions of other types of frame traffic are less
than 30%.

The proportion of management frames exceeds the
proportion of control and data frames at the beginning
and end session periods, which is determined by
the combined user behavior at the Conference. After
analyzing the characteristics of management frames
in different session periods, we find that there exists
a mass of beacon frames, association/disassociation
frames, authentication/deauthentication frames at the
beginning and end session periods. This phenomenon
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is due to the fact that many users try to join/leave a
Basic Service Set (BSS) and connect/disconnect with
Internet at the beginning and end session periods.
On the contrary, in the middle session periods, most
users have already joined a BSS and connected with
the Internet. So, the number of management frames,
such as beacon frames, association/disassociation
frames, authentication/deauthentication frames, used
to identify the BSS and connect with Internet in
the middle session periods is obviously less than
that at the beginning and end session periods.
Therefore, we observe that the proportion of
management frames is high at the beginning and
end session periods, but low in the middle session
period.

From Figure 6, we can see that the mean frame
size of management frames is the smallest. The mean
frame size of management frame in the beginning
and end session periods is 138 bytes. In the light of
the Poisson statistical theory, the aggregation of large
numbers of small size frames can smooth the burstiness
and self-similarity of the total frame traffic. Thereby,
the management frame traffic can weaken the self-
similarity and burstiness of the aggregated frame traffic
in the beginning and end session periods. On the other
hand, in the middle session period, the proportion
of the data frame traffic accounts for the maximum
proportion, i.e. 37%, but the mean frame size of the data
frame traffic is the largest in all types of mean frame
sizes, i.e. 444 bytes. Compared with the management
frame traffic in the beginning and end session periods,
in the middle session period, the proportion of the
data frame traffic is less than the proportion of
the management frame traffic while the mean frame
size of the data frame traffic is larger than that of
the management frame traffic. As a result, the data
frame traffic does not weaken the self-similarity and
burstiness of total frame traffic. With reference to this
analysis, we find that the impact of different types of
frame traffic on the self-similarity and burstiness of the
aggregated frame traffic is simultaneously related with
their mean frame size and proportion in the total frame
traffic. Compared with the previous research [11,12]
that only analyzes the aggregated frame traffic
characteristics, our analytical results provide an insight
for designing more efficient algorithms. For instance,
the burstiness of the aggregated frame traffic can
be weakened if a new MAC algorithm can reduce
the data frame size when their proportion is small
in the total frame traffic, so that the conflict of
access medium and congestion of frame traffic can be
decreased.

4. Modeling of Self-similarity of Frame
Traffic

As analyzed in the last section, the self-similarity
and burstiness characteristics of the aggregated frame
traffic are affected by different types of frame traffic.
We will derive for the first time an analytical model
to capture the relationship between the self-similarity
characteristics of the aggregated frame traffic and
different frame types. Since the self-similarity impact
parameter is inversely proportional to the burstiness
impact parameter, the burstiness feature could be
derived from the self-similarity analytical model.
Referring to the analytical results in Section 3, the
impact of different frame types on the self-similarity
characteristics of the aggregated frame traffic is
associated with the mean frame size and proportion
of each type in the aggregated frame traffic. We derive
the Hurst parameter (self-similarity) of the aggregated
frame traffic by the following analytical model.

HT = γ +
∑

i=m,c,d

αiHi = αmHm + αcHc + αdHd + γ,

i = m, c, d (4a)

αi = β − βi

2β
, i = m, c, d (4b)

βi = |pi − 0.33| + |li − lT |
lT

, i = m, c, d (4c)

β = βm + βc + βd (4d)

where γ is the error parameter, which is a constant
depending on the measurement error and environment.
HT is the Hurst parameter of the aggregated frame
traffic, Hi is the Hurst parameter of a specified type of
frame traffic, αi is the Hurst coefficient of a specified
type of frame traffic, and βi is the adjustment coefficient
of a specified type of frame traffic. i is the identifier
parameter, which is marked by the set {m, c, d},
wherein m, c, and d correspond to the management,
control, and data frame traffic, respectively. Let pi

be the proportion parameter of a specified type of
frame traffic, let li be the mean frame size of a specified
type of frame traffic, and let lT be the mean frame size
of the aggregated frame traffic. The aggregated frame
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Fig. 7. Comparison between the model values and
measurement values in IETF data.

traffic consists of different frame types, so we assume
the Hurst parameter of the aggregated frame traffic
is a combination of the Hurst parameters of different
frame types. Considering the impact of different frame
types on the aggregated frame traffic, the integrated
Hurst coefficient is designed to represent these impacts.
A framework of self-similarity analytical model is
then developed in Equation (4a). In Equations (4b)
and (4d), the Hurst coefficient αi is normalized by
the adjustment coefficients βi. In Equation (4c), the
adjustment coefficient βi is calculated by the relative
mean frame size and proportion of each frame type.
Based on Equations (4a), (4b), (4c), and (4d), a self-
similarity analytical model considering the impact of
different frame types is presented.

Some data sets collected from the 62nd IETF
Conference and 7th Symposium on Operating Systems
Design & Implementation (OSDI) are used to validate
this analytical model. The IETF collection data started
from 9:16 a.m. to 12:15 p.m. and they are divided
into six subsets with 30 min continuous time. The
OSDI data were collected from 1:07 p.m. to 9:56 p.m.
and they are divided into eight subsets with 30 min
continuous time. The performance of this analytical
model is shown in Figures 7 and 8.

To validate the accuracy of this analytical model,
we first eliminate the error parameter, i.e. γ = 0, to
compare the analytical values against the measurement
values. As shown in Figures 7 and 8, without
considering measurement errors, our analytical model
can calculate a Hurst curve with a similar shape to
the measurement values. The estimation error of Hurst
parameter by using our analytical model is less than
4.3% in IETF data and 2% in OSDI data, which can be
further reduced by considering the measurement error
in the experiments, i.e. γ is not equal to zero.

Fig. 8. Comparison between the model values and
measurement values in OSDI data.

Therefore, this analytical model on the relationship
of self-similarity characteristics between the aggre-
gated frame traffic and different frame types can
provide us with an insight and a practical guideline
in developing more efficient algorithms to regulate the
self-similarity of the aggregated frame traffic through
adaptively adjusting the mean frame size and the
proportion of specified frame types. In doing these,
the collision and congestion probabilities of frame
traffic at the common access medium can be reduced
and therefore, the medium utilization and system
throughput can be improved.

5. Conclusions

In this paper, we have investigated the characteristics
of frame traffic in a real 802.11 wireless network
and identified the impacts of different frame types
on the self-similarity and burstiness characteristics
of the aggregated frame traffic. Furthermore, we
have proposed an analytical model to capture the
relationship of self-similarity characteristics between
the aggregated frame traffic and different frame types.
These new results provide an insight of frame traffic
characteristics and a guideline for developing new
efficient algorithms to improve common medium
utilization and system throughput. Our future work
includes two parts: (1) we will further validate this
analytical model by using other wireless traffic data;
(2) we will compare our model and results with some
related work, such as References [15,16], and then
develop a new adaptive frame transmission algorithm
that can help to regulate the traffic characteristics and
improve the overall system performance.
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