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Abstract—Cognitive radio (secondary) networks have been
proposed as means to improve the spectrum utilization. A
secondary network can reuse the spectrum of a primary network
under the condition that the primary services are not harmfully
interrupted. In this paper, we study the distribution of the
interference power at a primary receiver when the interfering
secondary terminals are distributed in a Poisson field. We assume
that a secondary terminal is able to cease its transmission if it
is within a distance of R to the primary receiver. We derive a
general formula for the characteristic function of the random
interference generated by such a secondary network. With this
general formula we investigate the impacts of R, shadowing, and
small scale fading on the probability density function (PDF) of
the interference power. We find that when there is no interference
region (R = 0), the interference PDFs follow heavy-tailed α-stable
distributions. In case that a proper interference region is defined
by a positive value of R, the tails of the interference power
PDFs can be significantly shortened. Moreover, the impacts of
shadowing and small scale fading on the interference PDFs are
studied and the small scale fading is found to be beneficial in
terms of reducing the mean value and outage probability of the
interference power.

I. INTRODUCTION

The radio spectrum is a scarce and precious nature resource.
Traditionally, the whole spectrum is divided into smaller bands
and each band is licensed for the exclusive use of one or
several wireless applications. However, it has been shown
that once time and space variations of spectrum occupation
are taken into account, such a rigid spectrum licensing pol-
icy results in low spectrum utilization [1]. This imbalance
between the spectrum scarcity and low utilization motivates
the concept of cognitive radio (secondary) networks [2]–[4].
With the ability for each terminal to sense and adapt to the
radio environment, a cognitive radio network can dynamically
access the spectrum licensed to a primary network without
compromising the incumbent primary service [5], [6].

In this paper, we are interested in the interference from
secondary networks since it determines the degree to which
the primary services are degraded by sharing spectrum with
secondary networks. An accurate modeling of such interfer-
ence is of great importance in designing a secondary network
that can coexist well with primary networks. Simple protocol
models [7]–[9] are frequently adopted in the literature as the
interference model to study the capacities and protocols of
cognitive radio networks. However, these models are widely
considered as over-simplified. It is therefore desirable to have
statistical interference models that provide detailed descrip-
tions of the interference distribution.

For conventional (non-cognitive) radio networks, there is
a wealth of literature regarding interference/noise modeling
where the interferers are assumed to be distributed according
to a Poisson point process in the plane [10]–[15]. It has been
found that the interference PDF falls into the family of α-
stable distributions, which are heavy-tailed. Such a heavy-
tailed interference distribution is in general undesirable since
it suggests a higher likelihood of disruptive interference.

Interference modeling of cognitive networks differs from
that of conventional networks due to the distinct transmission
characteristic of a cognitive terminal and a conventional termi-
nal. While a conventional terminal transmits with a constant
power, a cognitive terminal is able to optimize its transmis-
sion according to the radio environments. In this paper, we
study one type of cognitive radio networks where a cognitive
terminal is able to cease its transmission if it is within the
“interference region” of any primary receiver. An interference
region is defined as a disk centered at a primary receiver
with a radius of R. Any cognitive terminal with this region
is regarded as a harmful interferer and is therefore forbidden
to transmit. In practice, a cognitive terminal can dynamically
obtain the information about the interference region through
either common signaling control channels [16] or primary
receiver detection algorithms [17].

The interference generated by this type of cognitive radio
networks has been studied in [18] where only the pathloss is
considered for the propagation channels. When the radius of
the interference region is sufficiently large, it was found that
the interference at a primary receiver can be approximated by
a confined Gaussian-like distribution – a much more desirable
distribution for spectrum sharing systems compared with a
heavy-tailed α-stable distribution. In this paper, we extend
the analysis in [18] to take into account the shadowing and
fading effects of the channels. Through numerical studies
we find that shadowing and fading change the shape of the
PDFs of the interference by prolonging the tails. Therefore,
a Gaussian approximation is no longer valid and the PDFs
of the interferences seem to be better approximated by log-
normal distributions.

The remainder of this paper is organized as follows. Section
II describes the system model. In Section III, we study the
distribution of the interference from cognitive transmitters.
Numerical results are presented in Section IV followed by
discussions. Finally, conclusions are drawn in Section V.
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II. SYSTEM MODEL

The system model is shown in Fig. 1. We consider a primary
receiver (Rx) with an omnidirectional antenna. We also assume
an ideal infinite secondary network with an infinite number
of secondary transmitters (Txs). The location of secondary
terminals in the plane follows a Poisson point process with
a density parameter λa, which denotes the average number of
secondary terminals per unit area. We assume that the proba-
bility of a terminal on transmission is p. The set of transmitting
terminals also forms a Poisson process with density parameter
λ = pλa. The primary receiver has an “interference region”
given by a disk centered at the primary receiver with a radius
of R. Any secondary device located within the interference
region is not allowed to transmit. On the other hand, all other
active secondary terminals outside this interference region can
transmit with power Pj , where j (1 ≤ j < ∞) is the index
for active secondary terminals. It is worth noting that the
interference region here is defined by primary receivers rather
than primary transmitters. When power control is applied in
the secondary network, we may consider {Pj} as independent
random variables with identical distributions. The distance
between the jth active secondary transmitter and the primary
receiver is denoted as rj , where R ≤ r1 ≤ r2 ≤ . . . ≤ r∞.
The channel gain between the jth secondary transmitter and
the primary receiver can be expressed as the product of two
factors: the pathloss and composite shadowing and fading. Let
g(r) denote the pathloss power gain at a distance r from
the transmitter of the signal. The exact form of g(r) will
depend on the environment. For a general discussion and
mathematical convenience, we follow [10] and assume that
g(r) is a monotonically decreasing function which satisfies
limr→0 g(r) = ∞ and limr→∞ g(r) = 0. Furthermore, let
hj denote the normalized composite shadowing and fading
random variable with unit mean. We assume that the random
variables {hj} are mutually independent and have identical
PDFs, denoted as fh(x). When lognormal shadowing and
Nakagami fading are assumed, fh(x) can be approximated
by a log-normal distribution as [19]

fh(x) ≈ 10
ln 10

√
2πσx

exp
{
− (10 log10 x− µ)2

2σ2

}
. (1)

In (1), the mean µ and variance σ2 are given by [19]

µ = ε−1 [ψ(m) − ln(m)] (2)

σ2 = ε−2ζ(2,m) + σ2
s (3)

respectively, where ε = ln(10)/10 is a constant, m is the
Nakagami shaping factor, σs is the standard deviation of the
lognormal shadowing, ψ(·) is the Euler psi function, and ζ(·, ·)
is Riemann’s zeta function [19]. The power of the interference
perceived at the primary receiver is then given by

Y =
∞∑

j=1

g(rj)xj . (4)

where xj = Pjhj . Clearly, {xj} are mutually independent and
have identical distributions, denoted as fX(x). The random

variable that has a distribution of fX(x) is denoted as X and
we have 0 ≤ X <∞.

III. INTERFERENCE MODELING

In this section, we wish to find the probability density
function (PDF) of Y given by (4). The approach used in [10]
for interference modeling of multihop networks is adopted
here and generalized for the above described system model.
Let Yl be the total interference power received from those
active secondary transmitters which are in a disk of radius l,
i.e.,

Yl =
∑

R≤rj≤l

g(rj)xj . (5)

Subsequently, we will first work on the characteristic function
of Yl. The characteristic function of Y can then be obtained
with l → ∞. The PDF of Y is then the inverse Fourier
transform of its characteristic function. By definition, the
characteristic function of Yl is given by

φYl
(ω) = E(eiωYl) (6)

where E(·) is the expectation operator. The calculation of the
expectation in (6) can be broken down into two steps using
conditional expectations. The inner expectation is taken over
Yl given that there are k active secondary transmitters within
the disk of radius l, followed by an outer expectation taken
over k, i.e., [10]

φYl
(ω) = E(E(eiωYl |k))

=
∞∑

k=0

e−λπDl(λπDl)k

k!
E(eiωYl |k) (7)

where Dl = l2 − R2. According to the nature of the Poisson
process, given that there are k terminals in the area of πDl,
{rj} have identical uniform distributions [10]. Let V denote
the random variable with the same uniform distribution, it
follows that the PDF of V is given by

fV (r) =
{

2r/Dl R ≤ r ≤ l
0 otherwise.

(8)

Since Yl is the sum of a number of independent random
variables, the conditional expectation E(eiωYl |k) denoting the
characteristic function of Yl given k can then be written as the
product of individual characteristic functions, i.e.,

E(eiωYl |k) = [E(eiωg(V )X)]k. (9)

Substituting (8) and (9) into (7), we have

φYl
(ω) = eλπDl(Q−1) (10)

where

Q = E(eiωg(V )X)

=
∫

x

fX(x)
∫ l

R

eiωg(r)x 2r
Dl
drdx. (11)

Taking the integral over r and considering l → ∞ we get

Q = 1 +
1
Dl

∫
x

fX(x)T (ωx)dx (12)
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where

T (ωx) = R2(1 − eiωg(R)x) + iωx

∫ g(R)

0

[g−1(t)]2eiωtxdt.

(13)
Note that in (13), g−1(·) denotes the inverse function of g(·).
Substituting (12) into (10), with l → ∞ we obtain

φY (ω) = exp
(
λπ

∫
x

fX(x)T (ωx)dx
)
. (14)

Equation (14) serves as a general formula to calculate the char-
acteristic function of Y . Taking its inverse Fourier transform
results in the PDF fY (y) of Y , i.e.,

fY (y) =
1
2π

∫ ∞

−∞
e−iωyφY (ω)dω. (15)

It is difficult to simplify (12) further except for some special
scenarios. To proceed further, we may first specify g(r) =
1/rβ , where β is the pathloss exponent.

A. Secondary Networks Without Interference Region

For secondary networks without any interference region, we
have R = 0 and consequently g(R) → ∞. With a typical value
of the pathloss exponent β = 4, following similar steps in [10]
we can obtain the closed-form expression of the PDF of Y as

fY (y) =
π

2
Kλy−3/2 exp

(
−π

3λ2K2

4y

)
(16)

where

K =
∫

x

fX(x)
√
xdx. (17)

The above PDF falls into the category of Levy distribu-
tion S1/2(σ, 1, µ) [20], [21] with the scale parameter σ =
π3λ2K2/2 and the shift parameter µ = 0.

B. Mean Interference Distribution

Previously in (4) , we have modeled {xj} as random
variables to account for the power control and channel fading.
Therefore, Y given by (4) represents the instantaneous inter-
ference power and would have impact on the instantaneous
signal-to-interference-and-noise ratio (SINR) at the primary
receiver. However, in some applications, e.g., delay-insensitive
services, the quality of service (QoS) of the primary network
is determined by the average SINR [22]. In this case, we
are interested in the mean interference power, i.e., the power
averaged over fading and power control states. It follows that
(4) becomes

Y = Ω
∑

g(rj) (18)

where Ω = E(xj) = E(Pj)E(hj) can be treated as a constant
and therefore only has a scaling effect on Y . Without loss of
generality we assume Ω = 1. The characteristic function of
Y in this special case can be obtained by treating X as a
constant in the general framework discussed previously. It is
easy to show that the characteristic function is given by

φY (ω) = exp (λπT (ω)) (19)

where

T (ω) = R2(1 − eiωg(R)) + iω

∫ g(R)

0

[g−1(t)]2eiωtdt. (20)

IV. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we will evaluate the PDF of Y numerically.
First of all, Fig. 2 shows the Levy distribution based on
(16) with different values of Kλ. As discussed previously, it
represents the interference power distribution of a secondary
network without any interference region. The Levy distri-
butions are featured by their heavy-tailed PDFs. This is an
undesirable feature in the context of cognitive radio networks
since it means that it is more difficult to predict and control
the interference caused by secondary networks.

Figs. 3 and 4 are obtained by numerically evaluating the
inverse Fourier transform of φY (ω) given in (19). They
represent the interference power distributions of a cognitive
network with a interference region, where the interference
power is averaged over power control and channel fading
states. Fig. 3 is obtained with λ = 1 and different values
of R. A larger value of R means a wider area of interference
region so that the primary receiver is better protected. As we
can see from Fig. 3, both the mean value and variance of the
interference power decrease with the increasing R. The case
of R = 0 leads to a heavy-tailed Levy distribution shown
previously in Fig. 2. With non-zero values of R, the tails are
shortened and the distribution of the interference power tends
to be more confined. Interestingly, when the value of R is
large enough, the distribution looks very similar to a Gaussian
distribution. Fig. 3 provides an insight that the heavy-tailed
distribution observed in Fig. 2 is due to the small number of
dominant interferers nearby the victim receiver. Once these
nearby interferers are eliminated, there will be no dominant
interferers and all the rest interferers would contribute a small
portion to the total interference power. Consequently, the
central limit theorem can be applied and the total interference
power tends to be Gaussian distributed.

In Fig. 4, we assume R = 1 m and show the impacts
of the terminal density λ and average transmit power Ω on
the interference power distribution. As expected, Gaussian-like
distributions are observed. Moreover, with the increasing λ, the
mean of the interference power scales linearly with λ, whereas
the variance increases slower than a linear scale. On the other
hand, as discussed in Sub-section III.B, the average transmit
power Ω has a scaling effect on the interference Y . When Y
follows a Gaussian distribution, both the mean and variance
would be scaled by Ω to the same degree. The difference of
the scaling effects of λ and Ω can be seen by comparing the
two distributions obtained with (λ = 2, Ω = 1) and (λ = 1,
Ω = 2), both scaled from that with (λ = 1, Ω = 1). The
two distribution curves have roughly the same mean but a
smaller variance is observed for the former case. This means
that in terms of interference outage probability, doubling the
density of the secondary terminals would be less disruptive to
the primary network than doubling the average transmission
power of the secondary terminals.
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In Fig. 5, we evaluate the instantaneous interference power
whose characteristic function is given by (14). We assume that
the secondary terminals transmit with constant powers and the
channels are subject to log-normal shadowing and Nakagami
fading as described in Section II. We assume that the standard
deviation of the the log-normal shadowing σs = 8 dB and the
Nakagami shaping factor m = 1, which corresponds to the
case of Rayleigh fading. Using the same sets of parameters
of Fig. 3, the PDFs of instantaneous interference power are
shown in Fig. 5. We can see that the PDFs in Fig. 5 has slightly
heavier tails than that in Fig. 3. This is because that when the
effects of fading and shadowing are taken into account, there
is a higher probability that a strong and dominant interference
would occur, which violates the applicability of the central
limit theorem and results in a non-Gaussian distribution with
heavier tails.

The PDFs of the instantaneous interference power are shown
in Fig. 6 with different values of the Nakagami shaping factor
m to show the impacts of small scale fading on the inter-
ference distribution. The standard deviation of the lognormal
shadowing is taken to be σs = 8 dB. When m = 1 we have a
composite Rayleigh-log-normal fading channel whereas when
m = 1000 the channel is dominated by log-normal shadowing.
Interestingly, from Fig. 6 we can see that the interference
power given by m = 1 has a smaller mean and better outage
property compared with that given by m = 1000. In other
words, severe fading can be beneficial in terms of reducing
the interference from secondary networks to primary networks.
Finally, from Fig. 5 and Fig. 6 we can see that the PDF
of the interference power can no longer be approximated by
a Gaussian distribution. An approximation with a lognormal
distribution seems to be more appropriate, the detail of which
is for future work.

V. CONCLUSIONS

In this paper, we have studied the distribution of the
interference generated by a secondary network to a primary
network. The secondary terminals are assumed to be cognitive
so that they can cease the transmission if any primary receiver
within a distance of R is detected. We have studied the
characteristic function of the random interference and derived
a general formula taking into account the cognitive ability,
power control, and channel fading. Under the same framework,
two special cases, namely, the interference PDFs in a cognitive
network without interference region and the mean interference
PDFs averaged over shadowing and fading states, have been
further investigated. Numerical results have shown that with a
predefined interference region, a cognitive secondary network
achieves much smaller interference outage probability than a
secondary network without any interference region. Moreover,
the PDFs of the instantaneous interference power have heavier
tails than the PDFs of the mean interference power averaged
over shadowing and fading states. Finally, small scale fading
are shown to have effects on reducing the mean and variance
of the instantaneous interference power.
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.

Fig. 1. System model: secondary transmitters distributed in a Poisson
filed and a primary receiver with an interference region of radius R.
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Fig. 2. Mean interference power PDFs without interference region
(R = 0).
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Fig. 3. Mean interference power PDFs with an interference region
(Ω = 1 and λ = 1).

0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Mean interference power

M
ea

n 
in

te
rf

er
en

ce
 p

ow
er

 P
D

F

 

 

λ = 1, Ω =1
λ = 2, Ω =1
λ = 3, Ω =1
λ = 4, Ω =1
λ = 1, Ω =2

Fig. 4. Mean interference power PDFs with an interference region
(R = 1 m).
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Fig. 5. Instantaneous interference power PDFs with an interference
region (λ = 1, σs = 8 dB, and m = 1).
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Fig. 6. Instantaneous interference power PDFs with an interference
region under different fading scenarios (R = 1 m, λ = 1, and σs =
8 dB).
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