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Rotationally Invariant Space-Time Trellis Codes with 4-D
Rectangular Constellations for High Data Rate Wireless

Communications
Corneliu Eugen D. Sterian, Cheng-Xiang Wang, Ragnar Johnsen, and Matthias Pätzold

Abstract: We demonstrate rotationally invariant space-time (ST)
trellis codes with a 4-D rectangular signal constellation for data
transmission over fading channels using two transmit antennas.
The rotational invariance is a good property to have that may alle-
viate the task of the carrier phase tracking circuit in the receiver.
The transmitted data stream is segmented into eight bit blocks and
quadrature amplitude modulated using a 256 point 4-D signal con-
stellation whose 2-D constituent constellation is a 16 point square
constellation doubly partitioned. The 4-D signal constellation is
simply the Cartesian product of the 2-D signal constellation with it-
self and has 32 subsets. The partition is performed on one side into
four subsetsA, B, C, and D with increased minimum-squared
Euclidian distance, and on the other side into four rings, where
each ring includes four points of equal energy. We propose both
linear and nonlinear ST trellis codes and perform simulations us-
ing an appropriate multiple-input multiple-output (MIMO) chan-
nel model. The 4-D ST codes constructed here demonstrate about
the same frame error rate (FER) performance as their 2-D coun-
terparts, having however the added value of rotational invariance.

Index Terms:Antenna diversity, MIMO systems, multidimensional
constellations, rotational invariance, space-time coded modulation,
wireless communications.

I. INTRODUCTION

The term “space-time (ST) coding” has been coined by
Tarokhet al. in their seminal paper [1] to mean a kind of radio
channel coding that is performed across the spatial dimension
as well as time to exploit the spatial diversity provided by us-
ing multiple transmit antennas. The basic idea, which is fully
detailed also in a series of papers by the same research team
[2]–[5], is to use more than a single transmit antenna so as to
have at least two independently faded paths from the transmitter
to the receiver. The receiver periodically measures the channel
parameters, which are thus known to it, at least approximately,
but not to the transmitter.

After Alamouti discovered a nice two transmit antenna com-
bining scheme [6], the interest of researchers moved to the so-
called “ST block codes”. These block codes can provide full
diversity, but no coding gain. Recently, in order to obtain also
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a coding gain, Jafarkhani and Seshadri designed multidimen-
sional ST codes with state transitions labeled with small block
codes [7]. The schemes like those disclosed in [1] require that
the radio channel be periodically measured in order to make the
fading coefficients known to the receiver. To avoid this time
consuming operation, Hochwald and Marzetta [8], Hochwald
and Sweldens [9], and Hughes [10], [11] developed the theory
of so-called “unitary ST modulation” that requires no coherent
demodulation and therefore no knowledge of the channel pa-
rameters at the receiver. Nevertheless, recent papers [7], [12]
show that the interest for schemes requiring the knowledge of
the channel parameters by the receiver side has not diminished.

The theory of fading channels is largely available (see for in-
stance [13], [14]). However, using these channels for mobile
communication purposes is a permanent challenge to scientists.
The search for new and better particular solutions for improving
the performance of wireless communication systems over fading
channels will certainly not slow down in the foreseeable future.
In the last five years, a rich literature on channel modeling and
coding systems flourished, including books [15]–[17]. There is
already a large body of literature on ST codes. Some of the
research papers attempt to generalize and subsume preceding
work [18]. Nevertheless, it is not clear as yet which contribu-
tions have a bright future and which ones will be forgotten by
lack of prospects. Therefore, we have not abandoned the line
of investigation started by [1]. Actually, we also benefit in the
present contribution from the big corpus of trellis coded modu-
lation (TCM) literature, e.g., [19]–[21], and are heavily indebted
to the work of Lee Fang Wei [22]. This work is also based on a
particular method of 4-D TCM described in [23].

In order to obtain also rotational invariance, our approach was
to develop the idea in [1] in the direction of a higher dimension-
ality of the signal space. To the best of our knowledge, no other
research team has demonstrated rotationally invariant ST trel-
lis codes as yet. Motivated by the known advantages of 2N-D
over 2-D in the well studied case of TCM [22], [24], we con-
sidered a 4-D QAM signal set partitioned in such a way that the
4-D points in a 4-D subset are different in both the first and the
second 2-D component points. As expected, the design of ST
trellis codes with 4-D QAM is rather elaborated. Therefore, to
facilitate the understanding, we describe it in a detailed manner.

The paper is organized as follows: In Section II, we consider
the 2-D 16-QAM ST code with 16 states disclosed in [1] and
design also other 16-, 32- and 64-state 2-D ST trellis codes that
transmitb = 4 bits per signaling interval. These ST codes will
be used later as reference for our new 4-D rotationally invariant
ST trellis codes. Section III describes the 4-D signal constella-
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tion and its partition. Section IV presents the general structure
of an encoder that generates 32, 64, and generally2ν states for
ν ≥ 5, rotationally invariant 4-D ST trellis codes to transmit
b = 4 bits per signaling interval. Then, Section V demonstrates
several examples of ST codes, both linear and nonlinear. Sec-
tion VI gives the error performance simulation results compared
to the 2-D 16-QAM ST codes considered in Section II as refer-
ence system. The MIMO channel simulation model for wireless
communications that we used for all ST codes was developed in
[25]. Using it, we recovered the results published in [1] for the
2-D 16-QAM ST code and this is, we believe, indicative of the
fact that the two simulation models, Tarokh’s and ours, while
different, are nevertheless equivalent, at least for the purpose at
hand. Finally, Section VII presents some conclusions.

II. 2-D SPACE-TIME 16-QAM TRELLIS CODES

A. 16-State 2-D Trellis Codes

In [1], many ST trellis codes for 4-PSK and 8-PSK are
demonstrated, and a single 16-QAM code with 16 states is
given. The 16-QAM constellation (Fig. 18 in [1]) is reproduced
here in Fig. 1 for convenience.

The input bit stream is segmented into blocks ofb = 4
bits denoted asI1n, I2n, I3n, andI4n. Such a block called
quadribit is applied as input to a convolutional encoder with
16 states at discrete timen. Let us denote the current state
of the convolutional encoder asW4nW3nW2nW1n, where
W1n, W2n, W3n and W4n are binary variables, then, the
states can be numbered from 0 to 15 using the relation

Wn = 8W4n + 4W3n + 2W2n + W1n . (1)

Every transition from the current stateWn to the next state
Wn+1 is labeled withY (1)

n Y
(2)
n , whereY

(1)
n andY

(2)
n are the 2-

D points from the 16-QAM constellation simultaneously trans-
mitted by Antenna 1 and by Antenna 2, respectively, at discrete
time n. We write the point labels using four binary variables
Y 1(i)

n , Y 2(i)
n , Y 3(i)

n andY 4(i)
n as follows:

Y (i)
n = 8Y 4(i)

n + 4Y 3(i)
n + 2Y 2(i)

n + Y 1(i)
n i = 1, 2 . (2)

Tarokhet al. have designed their ST trellis codes in [1] using
the following rules:

Rule 1: Transitions departing from the same state
differ in the second symbol.

Rule 2: Transitions arriving at the same state differ
at least in one symbol and, if possible, in
both symbols.

The 16-state trellis code for the 16-QAM constellation given
in Fig. 1 was obtained by Tarokhet al. from the block code (0 0,
1 11, 2 2, 3 9, 4 4, 5 15, 6 6, 7 13, 8 8, 9 3, 10 10, 11 1, 12 12, 13
7, 14 14, 15 5) of length 2 defined over the alphabet 16-QAM.
This block code is optimal in the sense of product distance [1].

The 16-QAM trellis code with 16 states whose trellis diagram
is given in [1, Fig. 19] has the block diagram shown in Fig. 2.
As may be seen, this is just a modified form of a delay diversity
scheme. For this code, transitions reaching the same state are
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Fig. 1. The 16-QAM signal constellation with points labeled as in [1].
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Fig. 2. 16-state, rate 4/8, ST convolutional encoder corresponding to the
trellis diagram of Fig. 19 in [1].

assigned two symbols from which the first one is the same and
the second one is different.

Let us now consider another labeling of the state transitions
of a 16-state convolutional encoder such that the rule 2 sounds:
Transitions arriving at the same state differ in both the first and
the second symbol. The trellis diagram is the same as that given
in [1, Fig. 19], but the labeling is different. The first part of the
labels of all 16 transitions originating from the same stateWn

[see (1)] is as follows:

Y 1(1)
n = W1n (3a)

Y 2(1)
n = W1n ⊕W2n (3b)

Y 3(1)
n = W3n (3c)

Y 4(1)
n = W1n ⊕W4n . (3d)

Now, with the binary variablesI1n, I2n, I3n, andI4n form the
decimal numberIn:

In = 8I4n + 4I3n + 2I2n + I1n . (4)

The second part of the label of the transition from the cur-
rent stateWn to the next stateWn+1 produced by the current
quadribit applied at the input is as written below:

Y (2)
n = Wn + In (modulo 16). (5)
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Fig. 3. New 16-state, rate 4/8, 2-D ST nonlinear convolutional encoder.

The block diagram of the corresponding (nonlinear) trellis en-
coder is given in Fig. 3.

Using the same design rules, we have also designed 32- and
64- state 2-D trellis codes.

B. 32-State 2-D Nonlinear Trellis Code

Denote the current state of the convolutional encoder
asW5nW4nW3nW2nW1n, whereW1n, W2n, W3n, W4n

andW5n are binary variables. Let us number in decimal nota-
tion the states from 0 to 31 using the relation

Wn = 16W5n + 8W4n + 4W3n + 2W2n + W1n . (6)

The first part of the label of all 16 transitions originating from
the same stateWn [see (6)] is as given below:

Y 1(1)
n = W1n ⊕W5n (7a)

Y 2(1)
n = W1n ⊕W2n ⊕W5n (7b)

Y 3(1)
n = W3n (7c)

Y 4(1)
n = W1n ⊕W4n ⊕W5n . (7d)

As about the second part of the label of the state transitions,
first form the following binary variables:

V 1n = W1n ⊕W5n (8a)

V 2n = W2n (8b)

V 3n = W3n (8c)

V 4n = W4n . (8d)

Now, with the binary variablesV 1n, V 2n, V 3n, andV 4n,
form the decimal numberVn according to

Vn = 8V 4n + 4V 3n + 2V 2n + V 1n . (9)

The second part of the label of the transition from the cur-
rent stateWn to the next stateWn+1 produced by the current
quadribit applied at the input is
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Fig. 4. 32-state, rate 4/8, 2-D ST nonlinear convolutional encoder.

Y (2)
n = Vn + In (modulo 16). (10)

The block diagram of the corresponding (nonlinear) trellis en-
coder is given in Fig. 4.

C. 64-State 2-D Nonlinear Trellis Code

Denote the current state of the convolutional encoder as
W6nW5nW4nW3nW2nW1n, where W1n, W2n, W3n,
W4n, W5n, andW6n are binary variables. Let us number in
decimal notation the states from 0 to 63 using the relation

Wn = 32W6n + 16W5n + 8W4n + 4W3n (11)

+ 2W2n + W1n .

The first part of the label of all 16 transitions originating from
the same stateWn [see (11)] is as follows:

Y 1(1)
n = W1n ⊕W5n (12a)

Y 2(1)
n = W1n ⊕W2n ⊕W5n ⊕W6n (12b)

Y 3(1)
n = W3n (12c)

Y 4(1)
n = W1n ⊕W4n ⊕W5n . (12d)

To describe the second part of the label of a state transition,
form first the following binary variables:

V 1n = W1n ⊕W5n (13a)

V 2n = W2n ⊕W6n (13b)

V 3n = W3n (13c)

V 4n = W4n . (13d)

Then, the second part of the label of the transition from the
current stateWn to the next stateWn+1 produced by the current
quadribit applied at the input is given by (10). The block dia-
gram of the corresponding (nonlinear) trellis encoder is given in
Fig. 5.
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Fig. 5. 64-state, rate 4/8, 2-D ST nonlinear convolutional encoder.

III. 4-D SIGNAL CONSTELLATION AND ITS
PARTITION

We will consider in this paper the sixteen-point 2-D constella-
tion shown in Fig. 6. It allows a data rate of four bits per channel
use. The points of the 2-D signal constellation belong to a rect-
angular grid and have odd integer coordinates. In other words,
if Z is the set of integers, then the coordinates of the 2-D points
belong to the set{2Z + 1}2. We partition this infinite set into
four 2-D subsetsA, B, C, andD according to

A = {4Z + 1}2 (14a)

B = {4Z + 3}2 (14b)

C = {4Z + 1}{4Z + 3} (14c)

D = {4Z + 3}{4Z + 1} . (14d)

If we denote the minimum-squared Euclidian distance (MSED)
of the set{2Z + 1}2 as δ2

0 , then the MSED of every subset
A, B, C, andD is 4δ2

0 . A 4-D point is simply a concatenation
of two 2-D points that will be successively transmitted by the
same antenna.

Sixteen 4-D types may then be defined, each correspond-
ing to a concatenation of two 2-D subsets, and denoted as
(A,A), (A,B), . . ., and(D, D). The 16 4-D types are grouped
into four subsets such that the types within a subset are different
of each other in both the first and the second 2-D component:

SS0 = (A,A) ∪ (B, B) ∪ (C, C) ∪ (D,D) (15a)

SS1 = (A,C) ∪ (B, D) ∪ (C,B) ∪ (D,A) (15b)

SS2 = (A,B) ∪ (B,A) ∪ (C, D) ∪ (D,C) (15c)

SS3 = (A,D) ∪ (B,C) ∪ (C,A) ∪ (D, B) . (15d)

Note with reference to Fig. 6 that these four subsets are invariant
under90◦, 180◦, and270◦ rotation. This property will greatly
simplify the building of rotational invariance into the codes.

The sixteen-point 2-D constellation in Fig. 6 is also parti-
tioned into four subsets calledrings. Each ring includes four
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Fig. 6. Sixteen-point 2-D constellation partitioned into four subsets
(A, B, C, D) and into four rings (R0, R1, R2, R3).

points of equalnormor energysuch that a rotation of any point
by 90◦, 180◦, and270◦ produces the other three points of the
same ring. Here, the norm of a point is defined as the squared
distance to the origin. Therefore, the ringR0 contains the
pointsA0, B0, C0, andD0 of norm 2, the ringR1 contains the
pointsA1, B1, C1, andD1 of norm 10, the ringR2 has points
A2, B2, C2, andD2 of norm 10, and the ringR3 has points
A3, B3, C3, andD3 of norm 18. Using these rings, we form
next a 256-point 4-D constellation partitioned into eight subsets
calledshellsas follows:

SH0 = (R0, R0) ∪ (R1, R1) (16a)

SH1 = (R0, R1) ∪ (R1, R0) (16b)

SH2 = (R0, R2) ∪ (R2, R0) (16c)

SH3 = (R0, R3) ∪ (R3, R0) (16d)

SH4 = (R1, R2) ∪ (R2, R1) (16e)

SH5 = (R1, R3) ∪ (R3, R1) (16f)

SH6 = (R2, R3) ∪ (R3, R2) (16g)

SH7 = (R2, R2) ∪ (R3, R3) . (16h)

The partition has been done in such a way that the 4-D points
inside a given shell are different of each other in both the first
and the second 2-D constituent point.

Combining the four subsetsSSk (k = 0, 1, 2, 3), defined by
(15a)–(15d), with the eight shellsSHj (j = 0, 1, . . . , 7), we
obtain 32 4-D subsetsSm (m = 0, 1, . . . , 31), where the index
m is given by the relation

m = 4j + k . (17)

Every one of the 32 subsets contains eight 4-D points that are
different from any other one in both the first and the second 2-D
component of it. We will use this signal constellation to transmit
blocks of eight bits.

The average energyEs of a 2-D square signal constellation
that allows transmittingb bits per signal point is given by the
formula [26]

Es =
(

2
3

)
(2b − 1) . (18)

ckahng
into
of

ckahng
from

ckahng
of

ckahng
from
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Hence, forb = 4, it follows Es = 10. We will assume from
now on that each coordinate of the signal constellation shown
in Fig. 6 is contracted by the scale factor

√
Es =

√
10 chosen

so that the average energy of the constellation points is 1. For

instance, the pointA0 has coordinates
(√

10
10 ,

√
10

10

)
instead of

(1, 1).

IV. GENERAL STRUCTURE OF A 4-D SPACE-TIME
ENCODER FOR SENDING FOUR BITS PER

SIGNALING INTERVAL

In [1], only the 2-D case is considered. However, the sys-
tem model developed there and the performance criteria de-
rived therefrom apply to the 4-D case as well. Assume that
a frame ofN 4-D symbols is transmitted by a communica-
tion system having two transmit antennas and denote the cor-
responding point ass = P

(1)
1 P

(2)
1 P

(1)
2 P

(2)
2 . . . P

(1)
N P

(2)
N . Be-

cause of the channel noise, a maximum-likelihood receiver may
decide erroneously in favor of another signal point, saye =
R

(1)
1 R

(2)
1 R

(1)
2 R

(2)
2 . . . R

(1)
N R

(2)
N , where, at discrete timen, the

4-D symbolsP (1)
n andP

(2)
n are simultaneously transmitted by

Antenna 1 and by Antenna 2, respectively.
The receiver may be equipped with any number of antennas,

but, for simplicity reasons, let us consider the case of only two
antennas. For every frame ofN 4-D symbols, it is supposed that
the receiver measures perfectly the path gainsαij from transmit
antennai (i = 1, 2) to receive antennaj (j = 1, 2). Thus, the
receiver has ideal channel state information (CSI). Form now
the matrix:

B(s, e)=

(
R

(1)
1 − P

(1)
1 R

(1)
2 − P

(1)
2 . . . R

(1)
N − P

(1)
N

R
(2)
1 − P

(2)
1 R

(2)
2 − P

(2)
2 . . . R

(2)
N − P

(2)
N

)
. (19)

According to the rank criterion derived in [1], the matrix
B(s, e) has to be full rank for any code wordss ande. Clearly,
in case of two transmit antennas, the full rank is 2. The deter-
minant criterion, which gives the coding advantage, puts as a
design target to make the sum of all2 × 2 principal cofactors
of A(s, e) = B(s, e)B∗(s, e) as large as possible for any code
wordss ande, whereB∗(s, e) is the Hermitian (transpose con-
jugate) ofB(s, e).

Now, in our construction, as we will see shortly, three out of
eight input bits are uncoded. Therefore, in the trellis diagram,
there are23 = 8 parallel transitions between every originating
stateWn and any corresponding next stateWn+1. It follows
that the shortest uncommon portion of the two stringss ande
has length one. It may be seen that our way to partition the 4-D
constellation into subsets of eight 4-D points that are different in
both the first and the second 2-D component of them guarantees
that the rank criterion is satisfied. As about uncommon paths
of lengths larger than one, the two design rules 1 and 2 of [1],
given here in Section II for convenience, guarantee that the rank
criterion is always satisfied.

In order to satisfy the determinant criterion as well, we have
developed the following block code:

(0 0, 1 29, 2 2, 3 31, 4 4, 5 25, 6 6, 7 27, 8 8, 9 21, 10 10, 11 23,
12 12, 13 17, 14 14, 15 19, 16 16, 17 13, 18 18, 19 15, 20 20,
21 9, 22 22, 23 11, 24 24, 25 5, 26 26, 27 7, 28 28, 29 1, 30 30,

Table 1. Partition of the 256-point 4-D signal set into 32 subsets.

4-D I6n Y 5(i) Y 4(i) Y 3(i) Y 2(i) Y 1(i) 4-D Type
Subset
S0 0 0 0 0 0 0 (A0, A0), (B0, B0), (C0, C0), (D0, D0)

1 (A1, A1), (B1, B1), (C1, C1), (D1, D1)
S1 0 0 0 0 0 1 (A0, C0), (B0, D0), (C0, B0), (D0, A0)

1 (A1, C1), (B1, D1), (C1, B1), (D1, A1)
S2 0 0 0 0 1 0 (A0, B0), (B0, A0), (C0, D0), (D0, C0)

1 (A1, B1), (B1, A1), (C1, D1), (D1, C1)
S3 0 0 0 0 1 1 (A0, D0), (B0, C0), (C0, A0), (D0, B0)

1 (A1, D1), (B1, C1), (C1, A1), (D1, B1)
S4 0 0 0 1 0 0 (A0, A1), (B0, B1), (C0, C1), (D0, D1)

1 (A1, A0), (B1, B0), (C1, C0), (D1, D0)
S5 0 0 0 1 0 1 (A0, C1), (B0, D1), (C0, B1), (D0, A1)

1 (A1, C0), (B1, D0), (C1, B0), (D1, A0)
S6 0 0 0 1 1 0 (A0, B1), (B0, A1), (C0, D1), (D0, C1)

1 (A1, B0), (B1, A0), (C1, D0), (D1, C0)
S7 0 0 0 1 1 1 (A0, D1), (B0, C1), (C0, A1), (D0, B1)

1 (A1, D0), (B1, C0), (C1, A0), (D1, B0)
S8 0 0 1 0 0 0 (A0, A2), (B0, B2), (C0, C2), (D0, D2)

1 (A2, A0), (B2, B0), (C2, C0), (D2, D0)
S9 0 0 1 0 0 1 (A0, C2), (B0, D2), (C0, B2), (D0, A2)

1 (A2, C0), (B2, D0), (C2, B0), (D2, A0)
S10 0 0 1 0 1 0 (A0, B2), (B0, A2), (C0, D2), (D0, C2)

1 (A2, B0), (B2, A0), (C2, D0), (D2, C0)
S11 0 0 1 0 1 1 (A0, D2), (B0, C2), (C0, A2), (D0, B2)

1 (A2, D0), (B2, C0), (C2, A0), (D2, B0)
S12 0 0 1 1 0 0 (A0, A3), (B0, B3), (C0, C3), (D0, D3)

1 (A3, A0), (B3, B0), (C3, C0), (D3, D0)
S13 0 0 1 1 0 1 (A0, C3), (B0, D3), (C0, B3), (D0, A3)

1 (A3, C0), (B3, D0), (C3, B0), (D3, A0)
S14 0 0 1 1 1 0 (A0, B3), (B0, A3), (C0, D3), (D0, C3)

1 (A3, B0), (B3, A0), (C3, D0), (D3, C0)
S15 0 0 1 1 1 1 (A0, D3), (B0, C3), (C0, A3), (D0, B3)

1 (A3, D0), (B3, C0), (C3, A0), (D3, B0)
S16 0 1 0 0 0 0 (A1, A2), (B1, B2), (C1, C2), (D1, D2)

1 (A2, A1), (B2, B1), (C2, C1), (D2, D1)
S17 0 1 0 0 0 1 (A1, C2), (B1, D2), (C1, B2), (D1, A2)

1 (A2, C1), (B2, D1), (C2, B1), (D2, A1)
S18 0 1 0 0 1 0 (A1, B2), (B1, A2), (C1, D2), (D1, C2)

1 (A2, B1), (B2, A1), (C2, D1), (D2, C1)
S19 0 1 0 0 1 1 (A1, D2), (B1, C2), (C1, A2), (D1, B2)

1 (A2, D1), (B2, C1), (C2, A1), (D2, B1)
S20 0 1 0 1 0 0 (A1, A3), (B1, B3), (C1, C3), (D1, D3)

1 (A3, A1), (B3, B1), (C3, C1), (D3, D1)
S21 0 1 0 1 0 1 (A1, C3) (B1, D3), (C1, B3), (D1, A3)

1 (A3, C1), (B3, D1), (C3, B1), (D3, A1)
S22 0 1 0 1 1 0 (A1, B3), (B1, A3), (C1, D3), (D1, C3)

1 (A3, B1), (B2, A1), (C3, D1), (D3, C1)
S23 0 1 0 1 1 1 (A1, D3), (B1, C3), (C1, A3), (D1, B3)

1 (A3, D1), (B3, C1), (C3, A1), (D3, B1)
S24 0 1 1 0 0 0 (A2, A3), (B2, B3), (C2, C3), (D2, D3)

1 (A3, A2), (B3, B2), (C3, C2), (D3, D2)
S25 0 1 1 0 0 1 (A2, C3), (B2, D3), (C2, B3), (D2, A3)

1 (A3, C2), (B3, D2), (C3, B2), (D3, A2)
S26 0 1 1 0 1 0 (A2, B3), (B2, A3), (C2, D3), (D2, C3)

1 (A3, B2), (B3, A2), (C3, D2), (D3, C2)
S27 0 1 1 0 1 1 (A2, D3), (B2, C3), (C2, A3), (D2, B3)

1 (A3, D2), (B3, C2), (C3, A2), (D3, B2)
S28 0 1 1 1 0 0 (A2, A2), (B2, B2), (C2, C2), (D2, D2)

1 (A3, A3), (B3, B3), (C3, C3), (D3, D3)
S29 0 1 1 1 0 1 (A2, C2), (B2, D2), (C2, B2), (D2, A2)

1 (A3, C3), (B3, D3), (C3, B3), (D3, A3)
S30 0 1 1 1 1 0 (A2, B2), (B2, A2), (C2, D2), (D2, C2)

1 (A3, B3), (B3, A3), (C3, D3), (D3, C3)
S31 0 1 1 1 1 1 (A2, D2), (B2, C2), (C2, A2), (D2, B2)

1 (A3, D3), (B3, C3), (C3, A3), (D3, B3)

31 3)

where the left number of each block is the indexm1 of the sub-
setS(1)

m1, which contains the 4-D point sent by Antenna 1, and

the right number is the indexm2 of the subsetS(2)
m2, which con-

tains the 4-D point sent by Antenna 2 at discrete timen. To see
that this block code is optimal in the sense of product distance,
compare the Figs. 1 and 6 that are identical except for the point
labeling. Looking now to Table 1, it is not difficult to check that,
if the block code of length 2 defined over the alphabet 16-QAM
is optimal in the sense of product distance, as is asserted in [1],
then our 4-D code is as well.

Eight bits are needed to select one out of 256 points of the
4-D signal constellation. The blocks with eight bits are con-
structed as follows: The first five bits select one out of 32 subsets
Sm (m = 0, 1, . . . , 31), and the other three bits choose one
out of the eight 4-D points of the selected subset. This means
that a 4-D point can carry eight bits of information with no er-
ror control. In order to improve the reliability of the wireless
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Fig. 7. Space-time coded modulation chain with two transmit antennas
and two receive antennas.
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Fig. 8. General structure of a ST coded modulation transmitter with two
antennas for sending 4 bits per signaling interval.

communication, we will use two transmit antennas instead of a
single one. The receiver can use any number of antennas, but in
our simulations we only considered the cases of a single antenna
and of two antennas. This approach is called antenna diversity.
Note that there is no need to enlarge the bandwidth of the radio
channel. The transmission chain is shown in Fig. 7.

Suppose now that the information source delivers bits seri-
ally under a clock with a period ofTb seconds. Then, the bit
stream is divided into eight bit blocks, what is tantamount to a
serial to parallel conversion under a clock with periodT = 8Tb.
Denote the eight bits of then-th block asI1n, . . . , I8n. As
shown in Fig. 8, the first five bitsI1n, . . . , I5n enter a rate
5/10 convolutional encoder that outputs two groups of five bits
Y 1(i), Y 2(i), Y 3(i), Y 4(i), and Y 5(i) (i = 1, 2). The first
group (for i = 1) selects a 4-D subset, a point of which will
be transmitted from the Antenna 1, and the second group (for
i = 2) will feed similarly the Antenna 2. Every antenna trans-
mits successively the two constituent 2-D points of a 4-D point
using the classical QAM scheme.

With this notation, the decimal value of the indexm of the
subsetSm is given by

m = 16Y 5(i) + 8Y 4(i) + 4Y 3(i) + 2Y 2(i) + Y 1(i) . (20)

To determine a 2-D point from the signal constellation shown
in Fig. 6, four bits are needed. Denote asZ0(i)

p , Z1(i)
p , Z2(i)

p ,

andZ3(i)
p , i = 1, 2, the four bits that select the first constituent

2-D point of the 4-D point transmitted by the antennai (i =
1, 2) and asZ0(i)

p+1, Z1(i)
p+1, Z2(i)

p+1, andZ3(i)
p+1, i = 1, 2, the

Table 2. Correspondence between Z1
(i)
l

Z0
(i)
l

and the 2-D four

subsets.

2-D subset Z1(i)
l Z0(i)

l

A 0 0
B 1 0
C 0 1
D 1 1

Table 3. Correspondence between Z3
(i)
k

Z2
(i)
k

and the four rings.

Ring Z3(i)
k Z2(i)

k

R0 0 0
R1 0 1
R2 1 0
R3 1 1

four bits that select the second constituent 2-D point of the 4-D
point transmitted by the same antennai. The correspondence
betweenZ1(i)

l Z0(i)
l , l = p, p + 1, and the four 2-D subsets

A, B, C, D is as given in Table 2. The correspondence between
Z3(i)

k Z2(i)
k , k = p andp+1, and the four rings of the 2-D signal

constellation of Fig. 6 is as given in Table 3.
Remember that, by the way the 4-D signal constellation has

been partitioned, its 32 subsetsSi, i = 1, . . . , 31, are invari-
ant to rotations by multiples of90◦. However, the eight points
inside every subset are not. In order to make the scheme trans-
parent to all the phase ambiguities of the signal constellation, we
differentially encode the bit pairI8nI7n. Note thatI7n andI8n

are two of the three uncoded bits that select a 4-D point inside a
given subsetSi. Therefore, we translate a sequence of this pair
by the same number of positions (zero, one, two, or three) into
a circular sequence,00, 01, 10, 11. As a result, the sequence
of 2-D points produced by the 4-D constellation mapping pro-
cedure will be rotated by0◦, 90◦, 180◦, and270◦ clockwise,
respectively. Hence, a differential encoder (see Fig. 8) of the
form

I8′nI7′n = (I8′n−1I7′n−1 + I8nI7n) mod 100base2 . (21)

and the corresponding differential decoder of the form

I8nI7n = (I8′nI7′n − I8′n−1I7′n−1) mod 100base2 . (22)

at the output of the trellis decoder will remove all the phase am-
biguities of the signal constellation.

The bit converter 1 and the bit converter 2 (see Fig. 8) are
identical and each one converts the four bitsY 1(i), Y 2(i), I7′n
andI8′n, i = 1, 2, into two pairs of selection bitsZ1(i)

p Z0(i)
p

andZ1(i)
p+1Z0(i)

p+1, which are used to select the pair of 2-D sub-
sets corresponding to the 4-D type. With the correspondence be-
tween the bit pairZ1(i)

l Z0(i)
l and the 2-D subsetsA, B, C, D

as shown in Table 2, the operation of the bit converter is repre-
sented in Table 4.

The 4-D block encoder 1 and the 4-D block encoder 2 of
Fig. 8 are also identical. Each of them takes four bitsY 3(i),
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Table 4. Partition of the 4-D 256 point rectangular constellation into 16

types.

I8′nI7′n Y 2(i)Y 1(i) 4-D Z1
(i)
p Z0p(i) Z1

(i)
p+1Z0

(i)
p+1

Types
0 0 0 0 A,A 0 0 0 0
0 1 C,C 0 1 0 1
1 0 B,B 1 0 1 0
1 1 D,D 1 1 1 1
0 0 0 1 A,C 0 0 0 1
0 1 C,B 0 1 1 0
1 0 B,D 1 0 1 1
1 1 D,A 1 1 0 0
0 0 1 0 A,B 0 0 1 0
0 1 C,D 0 1 1 1
1 0 B,A 1 0 0 0
1 1 D,C 1 1 0 1
0 0 1 1 A,D 0 0 1 1
0 1 C,A 0 1 0 0
1 0 B,C 1 0 0 1
1 1 D,B 1 1 1 0

Table 5. The 4-D block encoders.

Y 5(i) Y 4(i) Y 3(i) I6n 4-D Z3
(i)
p Z2

(i)
p Z3

(i)
p+1 Z2

(i)
p+1

Shell
0 0 0 0 R0, R0 0 0 0 0
0 0 0 1 R1, R1 0 1 0 1
0 0 1 0 R0, R1 0 0 0 1
0 0 1 1 R1, R0 0 1 0 0
0 1 0 0 R0, R2 0 0 1 0
0 1 0 1 R2, R0 1 0 0 0
0 1 1 0 R0, R3 0 0 1 1
0 1 1 1 R3, R0 1 1 0 0
1 0 0 0 R1, R2 0 1 1 0
1 0 0 1 R2, R1 1 0 0 1
1 0 1 0 R1, R3 0 1 1 1
1 0 1 1 R3, R1 1 1 0 1
1 1 0 0 R2, R3 1 0 1 1
1 1 0 1 R3, R2 1 1 1 0
1 1 1 0 R2, R2 1 0 1 0
1 1 1 1 R3, R3 1 1 1 1

Y 4(i), Y 5(i), andI6n, i = 1, 2, and generates two pairs of
selection bitsZ2(i)

p Z3(i)
p andZ2(i)

p+1Z3(i)
p+1, in accordance with

Table 5.
As it may be seen from Table 1, every one of the 32 subsets

contains eight 4-D points that are different of any other one in
both the first and the second 2-D component of it.

V. 4-D ROTATIONALLY INVARIANT ST TRELLIS
CODES

We will design now 32- and 64-states convolutional encoders,
both linear and nonlinear, which fit in the general diagram of the
ST coded modulation scheme shown in Fig. 8.

A. 32-State Convolutional Encoders

Denote the current state of the convolutional encoder as
W5nW4nW3nW2nW1n, where W1n, W2n, W3n, W4n,
andW5n are binary variables. Let us number in decimal no-
tation the states from 0 to 31 using the relation

Wn = 16W5n + 8W4n + 4W3n + 2W2n + W1n . (23)

Y5n
(1)

W 5nI 5n
T

W 4n

Y1n
(1)Y2n

(1)Y3n
(1)Y4n

(1)
Y1n

(2)Y2n
(2)Y3n

(2)
n

(2)Y4Y5n
(2)

I 4n

I 3n

I 2n

I 1n W 1n

W 2n

W 3n

T

T

T

T

Fig. 9. 32-state, rate 5/10, 4-D linear convolutional encoder.

Using the rules 1 and 2 to label the state transitions, we obtain
a linear code as follows. The first part of the label of all 32
transitions originating from the same stateWn [see (23)] is as
given by

Y 1(1)
n = W1n (24a)

Y 2(1)
n = W2n (24b)

Y 3(1)
n = W1n ⊕W3n (24c)

Y 4(1)
n = W1n ⊕W4n (24d)

Y 5(1)
n = W1n ⊕W5n . (24e)

The second part of the label of the transition from the current
stateWn to the next stateWn+1 produced by the current 5-tuple
of bits applied at the input is

Y 1(2)
n = I1n (25a)

Y 2(2)
n = I2n (25b)

Y 3(2)
n = I3n (25c)

Y 4(2)
n = I4n (25d)

Y 5(2)
n = I5n . (25e)

The block diagram of this 32 states linear convolutional encoder
is given in Fig. 9.

Consider next a different labeling of the state transitions such
that the transitions arriving at the same state differ in both the
first and the second symbol. The first part of the label of all
32 transitions originating from the same stateWn is identical to
that of the linear code. For the second part of the label, define
first the decimal numberIn as

In = 16I5n + 8I4n + 4I3n + 2I2n + I1n . (26)

The second part of the label of the transition from the current
stateWn to the next stateWn+1 produced by the current 5-tuple
of bits applied at the input is

Y (2)
n = Wn + In (modulo32) . (27)

The block diagram of the corresponding (nonlinear) trellis en-
coder is presented in Fig. 10.

In all designed 4-D ST codes, we used the rule 2 in that sense
that the transitions merging in a state differ in both the first and
the second symbol.

ckahng
of any
component of

ckahng
from



8 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 6, NO. 3, SEPTEMBER 2004

Y5n
(1)

W 4n

I 5n

16

Y1n
(2)Y2n

(2)
Y3n

(2)

16

T

5-BIT

FULL ADDER

1

2

4

8

1248

8

4

1

2

16

W 5n

Y1n
(1)

Y2n
(1)

Y3n
(1)

Y4n
(1)

Y5n
(2) Y4n

(2)

I 4n

I 3n

I 2n

I 1n W 1n

W 2n

W 3n

T

T

T

T

Fig. 10. 32-state, rate 5/10, 4-D ST nonlinear convolutional encoder.

B. 64-State Nonlinear Encoder

Denote the current state of the convolutional encoder as
W6nW5nW4nW3nW2nW1n, where W1n, W2n, W3n,
W4n, W5n, andW6n are binary variables. Let us number in
decimal notation the states from 0 to 63 using the relation

Wn = 32W6n + 16W5n (28)

+8W4n + 4W3n + 2W2n + W1n .

The first part of the label of all 32 transitions originating from
the same stateWn [see (28)] is as given below:

Y 1(1)
n = W1n ⊕W6n (29a)

Y 2(1)
n = W2n (29b)

Y 3(1)
n = W1n ⊕W3n ⊕W6n (29c)

Y 4(1)
n = W1n ⊕W4n ⊕W6n (29d)

Y 5(1)
n = W1n ⊕W5n ⊕W6n . (29e)

For the second part of the label of a state transition, first form
the following binary variables:

V 1n = W1n ⊕W6n (30a)

V 2n = W2n (30b)

V 3n = W3n (30c)

V 4n = W4n (30d)

V 5n = W5n . (30e)

Now, with the binary variablesV 1n, V 2n, V 3n, V 4n, and
V 5n form the decimal numberVn:

Vn = 16V 5n + 8V 4n + 4V 3n + 2V 2n + V 1n . (31)

The second part of the label of the transition from the current
stateWn to the next stateWn+1 produced by the current 5-tuple
of bits applied at the input is then as written below:

Y (2)
n = Vn + In (modulo32) . (32)

The block diagram of this 64-state convolutional encoder is
shown in Fig. 11.

W 6n

T

Y5n
(1)

W 4n

I 5n

16

Y1n
(2)Y2n

(2)
Y3n

(2)

16

T

5-BIT

FULL ADDER

1

2

4

8

1248

8

4

1

2

16

W 5n

Y1n
(1)

Y2n
(1)

Y3n
(1)

Y4n
(1)

Y5n
(2) Y4n

(2)

I 4n

I 3n

I 2n

I 1n W 1n

W 2n

W 3n

T

T

T

T

Fig. 11. 64-state, rate 5/10, 4-D ST nonlinear convolutional encoder.

VI. ERROR PERFORMANCE SIMULATIONS

In this section, we first describe the transmission model as
well as a typical MIMO channel model by using the complex
baseband notation. Here, the ST coded modulation system
shown in Fig. 7 is considered for wireless downlink transmis-
sion. It consists of two transmit antennas at the base station and
one or two receive antennas at the mobile station.

We write the discrete timenT simply asn, whereT is the
4-D symbol interval. Then, the 2-D symbol hasT/2 seconds
duration and we write2p for 2p ·T/2 and2p+1 for (2p+1)·T/2.

At the beginning and the end of each frame transmission, the
convolutional encoder is required to be in state zero. Suppose
now that at the discrete timen, the encoder is in stateWn and is
fed with a new block of eight information bitsI1n, . . . , I8n.
According to the trellis diagram, this will make the encoder
move into a new stateWn+1. The state transitionWn → Wn+1

shows by its labelS(1)
n S

(2)
n which 4-D subset is selected for

transmission. In fact, however, not subsets but symbols within
these subsets are transmitted. We then useP

(1)
n andP

(2)
n to de-

note 4-D symbols selected within their corresponding subsets
S

(1)
n andS

(2)
n , respectively, by the same group of three uncoded

information bitsI6n, I7′n, andI8′n. Now, both these symbols
will be simultaneously transmitted in two successive 2-D time
intervals of lengthT/2.

Let us writeP
(1)
n = (p(1)

2p , p
(1)
2p+1) andP

(2)
n = (p(2)

2p , p
(2)
2p+1).

At time 2p, Antenna 1 and Antenna 2 will transmit the first 2-D
pointsp

(1)
2p andp

(2)
2p , respectively. AfterT/2 seconds, at time

2p + 1, Antenna 1 will transmit the second 2-D pointp
(1)
2p+1 and

Antenna 2 will transmit the second 2-D pointp
(2)
2p+1.

At the receiver, the signalr(j)
l , (l = 2p, 2p + 1) received by

antennaj (j = 1, 2) at timel is given by

r
(j)
l =

2∑

i=l

αij · p(i)
l ·

√
Es + η

(j)
l . (33)

where the noiseη(j)
l at time l = 2p, 2p + 1 is modeled as in-

dependent samples of a zero-mean complex Gaussian random
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variable with varianceN0/2 per dimension. In (33),
√

Es is a
scale factor chosen so that the average energy of the signal con-
stellation equals 1 and is the same as for the 2-D case as given
by (18). Thus,Es = 10. In (33), the coefficientαij is the
path gain from transmit antennai (i = 1, 2) to receive antenna
j (j = 1, 2). Under the assumption that the signals transmitted
from different antennas undergo independent Rayleigh fading,
the path gainsαij can be modeled as independent samples of
complex Gaussian random variables having mean zero and vari-
ance 0.5 per dimension. It is also assumed that the fading is
quasi-static, which implies that the path gains are constant dur-
ing a frame and vary independently from one frame to another.
Several modeling methods have extensively been investigated
in [25] to enable the efficient generation of multiple sequences
of Rayleigh fading processes uncorrelated in time and between
sequences. In this paper, we have used the so-called RANDN
method [25].

To decode the proposed ST trellis code, we have used the
Viterbi algorithm. Assuming ideal channel state information
(CSI), the decoder has full knowledge of the path gainsαij for
i = 1, 2, andj = 1, 2. With two receive antennas, the branch
metric for a state transition labeled byS

(1)
n S

(2)
n is given by

2∑

l=1

2∑

j=1

∣∣∣∣∣r
(j)
l −

2∑

i=1

αij · p(i)
l

∣∣∣∣∣

2

. (34)

If only one receive antenna is used, (34) will be reduced to

2∑

l=1

∣∣∣∣∣rl −
2∑

i=1

αi · p(i)
l

∣∣∣∣∣

2

. (35)

According to the Viterbi algorithm, the path with the smallest
accumulated metric will be selected as the decoding output.

Next, we provide simulation results for the performance of
the ST codes, both 2-D and 4-D, given in Section II and in Sec-
tion V, respectively. Figs. 12 and 13 show frame error rates
(FERs) of the developed 4-D QAM ST codes at rate 4 b/s/Hz
with two transmit antennas and with one and two receive anten-
nas, respectively. Figs. 14 and 15 show bit error rates (BERs).
In these simulations, each frame consists of 65 4-D symbols out
of each transmit antenna. Note that the duration of 65 4-D sym-
bols equals the time length of 130 2-D symbols.

As seen from Figs. 12 and 13, the best code appears to be
the 2-D nonlinear 64-state ST code, and the worst one, the 2-D
nonlinear 16-state ST code, with all others in between, for both
one and two receive antennas. This result would suggest that
linear ST codes are preferable to their nonlinear counterparts.
However, in case of 4-D codes, we can compare the 32-state
linear and nonlinear and see that the latter one is always slightly
better, for both FER and BER, and one or two antennas.

VII. CONCLUSIONS

In our paper, we first presented a 16-state ST code that is dif-
ferent of that published in [1] and new 32- and 64-state ST codes
using the same 16 QAM signal constellation. Then we con-
sidered a 4-D rectangular signal constellation whose 2-D con-
stituent constellations are 16 QAM and we partitioned it into
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Fig. 12. The FER performance comparison of 2-D and 4-D QAM ST
codes at 4 b/s/Hz with one receive antenna.
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Fig. 13. The FER performance comparison of 2-D and 4-D QAM ST
codes at 4 b/s/Hz with two receive antennas.

4-D subsets such that the points within a subset are different in
both the first and the second 2-D component of it. We then con-
structed 4-D ST trellis codes that are fully rotationally invariant.
For both the 2-D and 4-D ST codes, enlarging the number of
states improves the FER performance, as expected. There is no
important difference between the performance of 2-D and 4-D
codes. The rotational invariance of the 4-D ST codes may con-
tribute to alleviate the task of the carrier phase tracking circuit
in the receiver.

Linear ST trellis codes are of course easier to design and to
generate than their nonlinear counterparts. However, in case of
4-D at least, the results have confirmed our intuition that non-
linear ST codes could be better than the linear ones. Some-
body skilled in the art may easily simplify our nonlinear ST
codes, both 2-D and 4-D, to linear ones. The converse is clearly
not true, and this is another reason why we have demonstrated
mostly nonlinear ST codes in this paper.

Nonlinear codes perform slightly better than the linear ones
of same complexity. This is explained by a better labelling of
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Fig. 14. The BER performance comparison of 2-D and 4-D QAM ST
codes at 4 b/s/Hz with one receive antenna.
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Fig. 15. The BER performance comparison of 2-D and 4-D QAM ST
codes at 4 b/s/Hz with two receive antennas.

state transitions in the trellis diagram. Indeed, for linear codes,
transitions originating in the same state and transitions joining
in the same state differ only in one of the two symbols, simulta-
neously transmitted by the two antennas, which label the transi-
tions, while the condition we impose on labels to differ in both
the first and the second symbol results in nonlinear codes. The
Hamming distance between labels of nonlinear codes is thus
maximized, a desirable property as shown in [19].
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