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Abstract—In this letter, a novel generative deterministic model
(GDM) is proposed for the simulation of error processes encoun-
tered in digital mobile fading channels. The proposed GDM is
simply a properly parameterized deterministic process followed
by a threshold detector and two mappers. Simulation results
show that this generative model enables us to match very closely
any given error-free run distribution (EFRD) and error cluster
distribution (ECD) of the underlying descriptive model.

Index Terms—Burst error statistics, deterministic processes, dig-
ital mobile fading channels, generative models.

I. INTRODUCTION

D IGITAL mobile fading channels often exhibit statistical
dependencies among errors. This results in the fact that

errors tend to occur in clusters or bursts. The study of the un-
derlying bursty error process is a prerequisite for the design and
performance evaluation of wireless communication protocols as
well as coding systems. Error models have, therefore, been de-
veloped, basing on either descriptive approaches [1] or genera-
tive approaches [2].

In the literature, a number of generative models have been
presented based on finite [2], [3] or infinite [2] state Markov
chains or hidden Markov chains [4]. Among these models,
simplified Frichman’s models (SFMs) with only one error state
[3] have received wide applications [5]. Recently, an initial
attempt was carried out in [6] to utilize deterministic processes
[7] for the development of generative models in digital Rayleigh
fading channels. The deterministic process based generative
model (DPBGM) [6] was shown to be a promising alternative
to Markov models. However, the fitting to the desired error-free
run distribution (EFRD) by using the DPBGM is not as good as
the result obtained from a SFM with 6 states [6]. In this letter,
an improved DPBGM is proposed, which enables us to nearly
perfectly match any given EFRD and error cluster distribution
(ECD) of the underlying descriptive model.

II. DESCRIPTIVE STATISTICS

An error sequence is represented by a binary sequence of ones
and zeros, where “1” and “0” denote error bits and correct bits,
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respectively. A gap is defined as a string of consecutive zeros
between two ones, having the length equal to the number of
zeros [5]. An error cluster is a region where the errors occur
consecutively. The length of an error cluster equals the number
of ones. In this letter, only the following two burst error statistics
are to be considered. The first frequently employed statistic is
the EFRD , which is defined as the probability that an
error is followed by at least error-free bits. The second one
is the ECD , which is the probability that a correct bit
is followed by or more consecutive bits in error [3].

To avoid a bit-by-bit analysis of the error sequence, a sensible
way of recording error data is to list the successive gap lengths
and error cluster lengths. From such records, the inference of
the EFRD and the ECD is straightforward. Consequently, a gap
recorder and an error cluster recorder are obtained.
For the derivation of the generative model in Section III, it is
convenient to further define the following quantities:

1) : the total length of the target error sequence.
2) : the total number of gaps.
3) : the total number of error clusters.
4) : the number of gaps of length in . Ap-

parently, holds, where
and denote the minimum value and the maximum
value in , respectively.

5) : the number of error clusters of length in
. Similarly, holds, where
and denote the minimum value and the max-

imum value in , respectively.

III. GENERATIVE DETERMINISTIC MODEL

It is well known that the statistics of burst errors can be esti-
mated from the level-crossing statistics of the fading envelope
process. This suggests the possibility that generative models can
be developed from fading processes. The idea of the proposed
generative model is to derive directly from a deterministic enve-
lope process a gap length generator and an error cluster length
generator. The employed deterministic process is properly
parameterized and sampled with a certain sampling interval .
The sampled deterministic process , where with

as the set of integers, is then followed by a threshold detector.
Error clusters are produced if the level of falls below
a given threshold . The lengths of the generated error clus-
ters equal the numbers of samples in corresponding fading in-
tervals of . On the other hand, gaps are generated if the
level of is above . The gap lengths equal the num-
bers of samples in corresponding inter-fade intervals of .
Consequently, an error cluster length generator and a gap
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length generator are obtained. For the generative model,
we use similar notations to those in Section II by simply putting
the tilde sign on all affected symbols, i.e., we write , ,

, etc.

A. The Level-Crossing Rate (LCR) Fitting

The parameters of the deterministic process are determined
by fitting the LCR at the chosen threshold to the desired occur-
rence rate of error clusters. Let us consider the following con-
tinuous-time deterministic process [7]

(1)

where

(2)

In (2), defines the number of sinusoids, , , and
are called the gains, the frequencies, and the phases,

respectively. By using the method of exact Doppler spread
(MEDS) [7], the phases are equated with the realiza-
tions of a random generator uniformly distributed over (0,

], while and are given by and
, respectively. Here, is

the square root of the mean power of and represents
the maximum Doppler frequency.

When using the MEDS, it has been shown in [7] that the LCR
of is very close to the LCR of a Rayleigh

process, which is given by

(3)

where and
, , denotes the Rayleigh distri-

bution. The task at hand is to find a proper parameter
vector in order to fit the LCR

of at to the given occurrence
rate of error clusters. Here, denotes the total
transmission time of the reference transmission system, from
which the target error sequence of length is obtained. To
solve the problem, we first choose reasonable values for ,

, , and , e.g., , , , and
. Then, performing , can be

calculated according to .

B. The Mapping Systems

In general, the numbers of samples located in successive
fading intervals and inter-fade intervals of are not
suitable to directly generate an acceptable ECD and EFRD,
respectively. Two mapping systems are therefore introduced,
which map the lengths of the generated error clusters and gaps
to the specified lengths, as explained subsequently. Let us first
define the following useful quantities: ,

, , and
. Here, denotes the required

length of the generated error sequence and represents the
nearest integer to toward minus infinity. The necessary sim-

ulation time for the deterministic process can be calculated
according to .

The idea of the mapping systems is to modify and
in such a way that and

hold, respectively, where

if
if

(4)

if
if .

(5)

Here, and are real numbers located in the interval
(0,1), which have to be chosen properly in order to fulfill

and

, respectively. Note that the resulting EFRD
will be close to the desired EFRD , since
is almost proportional to . Also, the resulting ECD

will match well the desired one . Next, we
will only concentrate on the procedure of properly modifying

. The same procedure applies also to . For each error
cluster length value ( ), we first find the
corresponding values and ( , )

in to satisfy the following conditions:

and . Let us

define . Clearly,

holds. This indicates

that if we map all error cluster lengths between and
and error cluster lengths of in to , then

is satisfied. In summary, the mapping
system for the error cluster length generator works as follows:
if ( ) samples of the deterministic process
are observed in a fading interval, a mapping is first
performed and then an error cluster with length is gener-
ated. The resulting error sequence is simply the combination of
consecutively generated gaps and error clusters.

Due to the fact that the proposed error generation mechanism
does not require any random generators, the obtained generative
model is completely deterministic. This motivates us to call it
generative deterministic model (GDM). We stress that, although
the simulation set-up phase (determining the parameter vector
and performing the mappings) of the GDM requires relatively
long time, the simulation run phase (generation of the error se-
quence) is fast. Therefore, the proposed GDM can be considered
as a fast error process simulator, since it determines directly gap
and cluster lengths instead of bit sequences.

IV. SIMULATION RESULTS AND DISCUSSION

The adopted reference transmission system is a coherent
QPSK system with a Rayleigh fading channel [6]. The transmis-
sion rate was set to be kb s. A signal-to-noise
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Fig. 1. EFRDs of the generative models and the descriptive model.

Fig. 2. ECDs of the generative models and the descriptive model.

ratio of 15 dB was selected for the generation of the target error
sequence of length . This corresponds to a bit

error probability of 7.5341 . The total transmission time
is . Altogether and

were obtained.
The procedure described in Section III is applied here for ob-

taining the GDM. The chosen parameter vector for the deter-
ministic process was . Other
quantities were determined as follows: ,

, , , and . Figs. 1
and 2 show the EFRDs and the ECDs of the GDM, a SFM with
six states [6], and the descriptive model, respectively. As ex-
pected, the near perfect match is observed in both curves for
the GDM. The SFM enables a very good approximation to the
EFRD of the descriptive model. However, the SFM fails to cap-
ture the feature of the ECD with good accuracy. Both genera-
tive models require relatively long time in the simulation setup
phase, but the simulation run phase of the GDM is much faster
than that of the SFM.

V. CONCLUSION

This letter proposes a novel generative model, which is
simply a deterministic process followed by a threshold detector
and two mapping systems. The merit of the proposed GDM
lies on the fast generation of error sequences and its ability to
fit nearly perfectly any given EFRD and ECD of the underlying
descriptive model.

REFERENCES

[1] P. M. Crespo, R. M. Pelz, and J. Cosmas, “Channel error profiles for
DECT,” Proc. IEE—Commun., vol. 141, no. 6, pp. 413–420, Dec. 1994.

[2] L. N. Kanal and A. R. K. Sastry, “Models for channels with memory and
their applications to error control,” Proc. IEEE, vol. 66, pp. 724–744,
July 1978.

[3] B. D. Frichman, “A binary channel characterization using partitioned
Markov chains,” IEEE Trans. Inform. Theory, vol. 13, pp. 221–227, Apr.
1967.

[4] W. Turin, Digital Transmission Systems: Performance Analysis and
Modeling. New York: McGraw-Hill, 1999.

[5] F. Swarts and H. C. Ferreira, “Markov characterization of digital fading
mobile VHF channels,” IEEE Trans. Veh. Technol., vol. 43, pp. 977–985,
Nov. 1994.

[6] C. X. Wang and M. Pätzold, “A novel generative model for burst
error characterization in Rayleigh fading channels,” in Proc. IEEE
PIMRC’03, Beijing, China, Sept. 7–10, 2003, pp. 960–964.

[7] M. Pätzold, Mobile Fading Channels. Chichester, U.K.: Wiley, 2002.


