
1

FFT algorithms 4.1

Fast Fourier Transform

Dr Yvan Petillot

FFT algorithms 4.2

FFT Algorithms

• Developed by Cooley and Tukey in 1965

• Revolutionised signal processing and paved the way
for DSP.

• Various forms exist:
©Decompistion in Frequency (DIF)

©Decomposition in Time (DIT)

©Radix-4, Radix-2

• Critical for filtering and convolution

2

FFT algorithms 4.3

Idea behind FFT

1-Nk0 ,W)n(xe)n(x)k(X
1N

0n

nk
Np

N

kn
2j1N

0n
p ≤≤== ∑∑

−

=

π−−

=

DFT:

Requires N2 multiplication and N2 addition.

Can this be reduced by finding more efficient ways of

calculating X(k)?

Subdividing the DFT into smaller DFTs is the solution!

FFT algorithms 4.4

Decimation in time (DIT)

1-Nk0 ,W)n(xe)n(x)k(X
1N

0n

nk
N

N
kn

2j1N

0n

≤≤== ∑∑
−

=

π−−

=

DFT:

2 Points DFT:

)1(x)0(x)1(X

)1(x)0(x)0(X

1eW

W)1(xW)0(xW)n(x)k(X

2

2j

2

1

0n

k1
2

0
2

nk
2

−=
+=

−==

+==

π
−

=
∑

x(0)

x(1)

X(0)

X(1)

1

1

1

-1

Butterfly structure
No complex multiply!

3

FFT algorithms 4.5

Decimation in time 4 points DFT

4 Points DFT:

[]
[] []

)1n2(x)n(xand)n2(x)n(xwhere

)k(XW)k(X)k(X

)n(xDFT W)n(xDFT)k(X

W)3(xW)1(xWW)2(xW)0(x)k(X

WW

WW

W)3(xW)2(xW)1(xW)0(xW)n(x)k(X

21

2
k
41

odd n2
k
4even n2

k2
4

k0
4

k
4

k1
2

0
2

k1
2

k2
4

k0
2

k0
4

k3
4

k2
4

4

0n

k1
4

0
4

nk
4

+==
+=

+=

+++=

=

=

+++== ∑
=

FFT algorithms 4.6

Decimation in time 4 points DFT

4 Points DFT:

)1(XW)1(X)3(X

)0(X)0(X)2(X

)1(XW)1(X)1(X

)0(X)0(X)0(X

)k(X)2k(X

)k(X)2k(X

)k(XW)k(X)k(X

2
1
41

21

2
1
41

21

22

11

2
k
41

−=

−=
+=

+=
=+
=+

+=

X1(1)

X1(0)

Recomposition
of 2 2-point

DFT into one 4
point DFT

2-point
DFT

x(0)

x(2)

2-point
DFT

x(1)

x(3)

X2(0)

X2(1)

X(0)

X(1)

X(2)

X(3)

4

FFT algorithms 4.7

Decimation in time: Example

Example: x(n) = [0 1 2 3]

j22)1(XW)1(X)1(X)3(X

2)0(X)0(X)2(X

j22)1(XW)1(X)1(X

6)0(X)0(X)0(X

jeeW

2)3(x)1(x)1(X

4)3(x)1(x)0(X

2)2(x)0(x)1(X

2)2(x)0(x)0(X

2
1
41

21

2
1
41

21

2

j

4

2j
1
4

2

2

1

1

−−=−==

−=−=
+−=+=

=+=

−===

−=−=
=+=

−=−=
=+=

π
−

π
−

FFT algorithms 4.8

Decimation in time:8 points case

[]

[]

k
8

4k
8

2
k
81

k3
4

k2
4

k1
4

k0
4

k1
8

k3
4

k2
4

k
4

k0
4

nk
4

nk2
8

k6
8

k4
8

k2
8

k0
8

k1
8

k6
8

k4
8

k2
8

k0
8

k7
8

k6
8

k5
8

k4
8

k3
8

k2
8

k1
8

k0
8

7

0n

nk
8

WW

)k(XW)k(X)k(X

W)7(xW)5(xW)3(xW)1(xWW)6(xW)4(xW)2(xW)0(x)k(X

WW

W)7(xW)5(xW)3(xW)1(xWW)6(xW)4(xW)2(xW)0(x)k(X

W)7(xW)6(xW)5(xW)4(xW)3(xW)2(xW)1(xW)0(xX(k)

0,1,....,7k , W)n(x)k(X

−=

+=

+++++++=

=

+++++++=

+++++++=

==

+

=
∑

5

FFT algorithms 4.9

Decimation in time:8 points case

FFT algorithms 4.10

Decimation in time:8 points case

6

FFT algorithms 4.11

Decimation in time: general case

)k(X W)k(X

W)l(xW W (l)x

W)1l2(xW W)l2(x)k(X

WeeW

:BUT

W)1l2(xW)l2(x

W)n(xW)n(x

W)n(xe)n(x)k(X

2
k
N1

12/N

0l

lk
2/N2

k
N

1-N/2

0l

lk
2/N1

12/N

0l

lk
2/N

k
N

1-N/2

0l

lk
2/N

lk
2/N

lk
2/N

2j
lk2

N

2j
k2

N

12/N

0l

k)1l2(
N

1-N/2

0l

lk2
N

odd n

nk
N

even n

nk
N

1N

0n

nk
N

N

kn
2j1N

0n

+=

+=

++=

===

++=

+=

==

∑∑

∑∑

∑∑

∑∑

∑∑

−

==

−

==

π−π−

−

=

+

=

−

=

π−−

=

k
N

2/N
N

k
N

2/Nk
N

2211

WWWW

)k(X
2
N

kX ,)k(X
2
N

kX

−==

=



 +=



 +

+

1-N/20,1,...,n),1n2(x)n(x

1-N/20,1,...,n),n2(x)n(x

2

1

=+=
==

FFT algorithms 4.12

Decimation in time: general case

7

FFT algorithms 4.13

Decimation in time: general case

FFT algorithms 4.14

Using FFTs for inverse DFTs

• We’ve always been talking about forward DFTs in our
discussion about FFTs …. what about the inverse FFT?

• One way to modify FFT algorithm for the inverse DFT
computation is:
©Replace by wherever it appears

©Multiply final output by

• This method has the disadvantage that it requires
modifying the internal code in the FFT subroutine

WN
k WN

−k

1/ N

x[n] = 1
N

k=0

N−1
∑ X[k]WN

−kn ; X[k] =
n=0

N−1
∑ x[n]WN

kn

8

FFT algorithms 4.15

A better way to modify FFT code for
inverse DFTs

• Taking the complex conjugate of both sides of the IDFT
equation and multiplying by N:

• This suggests that we can modify the FFT algorithm for the
inverse DFT computation by the following:

©Complex conjugate the input DFT coefficients

©Compute the forward FFT

©Complex conjugate the output of the FFT and multiply by

• This method has the advantage that the internal FFT code is
undisturbed; it is widely used.

*

kn
N

1N

0k
N
1

1N

0k

kn
N W]k[*X]n[x or ;W]k[*X]n[*Nx 



== ∑∑

−

=

−

=

1/ N

FFT algorithms 4.16

Alternate FFT structures

• We developed the basic decimation-in-time (DIT) FFT
structure in the last lecture, but other forms are
possible simply by rearranging the branches of the
signal flowgraph

• Consider the rearranged signal flow diagrams on the
following panels …..

9

FFT algorithms 4.17

Alternate DIT FFT structures (continued)

• DIT structure with input bit-reversed, output natural
(OSB 9.10):

FFT algorithms 4.18

Alternate DIT FFT structures (continued)

• DIT structure with input natural, output bit-reversed
(OSB 9.14):

10

FFT algorithms 4.19

Alternate DIT FFT structures (continued)

• DIT structure with both input and output natural (OSB
9.15):

FFT algorithms 4.20

Alternate DIT FFT structures (continued)

• DIT structure with same structure for each stage (OSB
9.16):

11

FFT algorithms 4.21

Comments on alternate FFT structures

• A method to avoid bit-reversal in filtering operations
is:
©Compute forward transform using natural input, bit-reversed

output (as in OSB 9.10)

©Multiply DFT coefficients of input and filter response (both
in bit-reversed order)

©Compute inverse transform of product using bit-reversed
input and natural output (as in OSB 9/14)

• Latter two topologies (as in OSB 9.15 and 9.16) are
now rarely used

FFT algorithms 4.22

The decimation-in-frequency (DIF)
FFT algorithm

• Decimation in frequency is an alternate way of developing the
FFT algorithm

• It is different from decimation in time in its development,
although it leads to a very similar structure

12

FFT algorithms 4.23

The decimation in frequency FFT (continued)

• Consider the original DFT equation ….

• Separate the first half and the second half of time samples:

• Note that these are not N/2-point DFTs

X[k] =
n=0

N−1
∑ x[n]WN

nk

X[k] =
n=0

(N / 2)−1

∑ x[n]WN
nk +

n=N / 2

N−1

∑ x[n]WN
nk

=
n=0

(N / 2)−1
∑ x[n]WN

nk + WN
(N / 2)k

n=0

(N / 2)−1
∑ x[n + (N / 2)]WN

nk

=
n=0

(N / 2)−1

∑ x[n]+ (−1)k x[n + (N / 2)][]WN
nk

FFT algorithms 4.24

Continuing with decimation in frequency ...

• For k even, let

• For k odd, let

• These expressions are the N/2-point DFTs of

X[k] =
n=0

(N / 2)−1

∑ x[n]+ (−1)k x[n + (N / 2)][]WN
nk

k = 2r

X[k] =
n=0

(N / 2)−1
∑ x[n]+ (−1)2r x[n + (N / 2)][]WN

n2r =
n=0

(N / 2)−1
∑ x[n]+ x[n + (N / 2)][]WN / 2

nr

k = 2r +1

X[k] =
n=0

(N / 2)−1

∑ x[n]+ (−1)2r (−1)x[n + (N / 2)][]WN
n(2r+1)

=
n=0

(N / 2)−1

∑ x[n]− x[n + (N / 2)][]WN
nWN / 2

nr

x[n] + x[n + (N / 2)] and [x[n]− x[n + (N / 2)]]WN
n

13

FFT algorithms 4.25

These equations describe the following structure:

FFT algorithms 4.26

Continuing by decomposing the odd and even output
points we obtain …

14

FFT algorithms 4.27

… and replacing the N/4-point DFTs by butterflys we
obtain

FFT algorithms 4.28

The DIF FFT is the transpose of the DIT FFT

• To obtain flowgraph transposes:
©Reverse direction of flowgraph arrows

©Interchange input(s) and output(s)

• DIT butterfly: DIF butterfly:

• Comment:
©We will revisit transposed forms again in our discussion of

filter implementation

15

FFT algorithms 4.29

The DIF FFT is the transpose of the DIT FFT

Comparing DIT and DIF structures:

DIT FFT structure: DIF FFT structure:

Alternate forms for DIF FFTs are similar to those of DIT FFTs

FFT algorithms 4.30

Alternate DIF FFT structures

• DIF structure with input natural, output bit-reversed
(OSB 9.20):

16

FFT algorithms 4.31

Alternate DIF FFT structures (continued)

• DIF structure with input bit-reversed, output natural
(OSB 9.22):

FFT algorithms 4.32

Alternate DIF FFT structures (continued)

• DIF structure with both input and output natural (OSB
9.23):

17

FFT algorithms 4.33

Alternate DIF FFT structures (continued)

• DIF structure with same structure for each stage (OSB
9.24):

FFT algorithms 4.34

FFT structures for other DFT sizes

• Can we do anything when the DFT size N is not an
integer power of 2 (the non-radix 2 case)?

• Yes! Consider a value of N that is not a power of 2,
but that still is highly factorable …

• Then let

Let N = p1p2 p3p4...pν ; q1 = N / p1, q2 = N / p1p2 ,etc.

X[k] =
n=0

N−1
∑ x[n]WN

nk

= x[p1r]WN
p1rk

r=0

q1−1

∑ + x[p1r +1]WN
(p1r+1)k

r=0

q1−1

∑ + x[p1r + 2]WN
(p1r+2)k

r=0

q1−1

∑ + ...

18

FFT algorithms 4.35

Non-radix 2 FFTs (continued)

• An arbitrary term of the sum on the previous panel is

• This is, of course, a DFT of size of points spaced by

r=0

q1−1

∑ x[p1r + l]WN
(p1r+l)k

=
r=0

q1−1

∑ x[p1r + l]WN
p1rkWN

lk = WN
lk

r=0

q1−1

∑ x[p1r + l]Wq1
rk

q1 p1

FFT algorithms 4.36

Non-radix 2 FFTs (continued)

• In general, for the first decomposition we use

• Comments:
©This procedure can be repeated for subsequent factors of N

©The amount of computational savings depends on the extent
to which N is “composite”, able to be factored into small
integers

©Generally the smallest factors possible used, with the
exception of some use of radix-4 and radix-8 FFTs

X[k] = WN
lk

l=0

p1−1

∑
r=0

q1−1

∑ x[p1r + l]Wq1
rk

19

FFT algorithms 4.37

Summary

• We have considered a number of alternative ways of
computing the FFT:
©Alternate implementation structures

©The decimation-in-frequency structure

©FFTs for sizes that are non-integer powers of 2

©Using standard FFT structures for inverse FFTs

