HERIOT-WATT UNIVERSITY

DEPARTMENT OF COMPUTING AND ELECTRICAL ENGINEERING

B35SD2 – Matlab tutorial 7

Image modelling using Markov Random Fields 

Objectives:

We will demonstrate how Markov Random Fields (MRF) and fractals can be used effectively in image processing for modelling both for synthesis and analysis. 

During this session, you will learn & practice:

1- Ising MRF models
2- AutoBinomial Models 
Ressources required:

In order to carry out this session, you will need to download images and matlab files from the following location:

http://www.cee.hw.ac.uk/~ceeyrp/WWW/Teaching/B39SD2/B39SD2.html
Please download the following functions and script:
· generate_MRF.m
· generate_MRF_quick.m
· generate_MRF_Binomial.m
· denoise_MRF.m
Image Modelling :

As you will have seen in the lecture room, image modelling plays an important role in modern image processing. It is commonly used in image analysis for texture segmentation, classification and synthesis (game industry for instance). It is also of common use in multimedia applications for compression purposes. Due to the diversity of image types, it is impossible to have one universal model to cover all the possible types, even when limiting ourselves to simple texture cases. Various models have been proposed and each has its advantages and drawbacks. For textures, co-occurrence matrices are a standard choice but they are in general difficult to compute and are difficult to use for modelling.

We will concentrate here on MRF and fractal models which have been widely and very successfully used in the last 15 years. Fractals have been used for compression for instance.

Markov Random fields :

Markov random fields belong to the statistical models of images. 

Each pixel of an image can be viewed as a random variable. 

An image can very generally be described as the realisation of a n by m dimensional random variable of (in general unknown)  probability density function (pdf). Given the fact that n and m are the dimensions of the image, each component of the vector corresponds to a pixel in the image. This is called a random field. 

To generate a sample image from a given random field, we want to sample p(X) where X is the nxm random field. If we assume that all the pixels are uncorrelated we can then simulate (or sample) p(X) as 
[image: image1.wmf]Õ

=

=

n

i

i

x

p

X

p

1

)

(

)

(

where xi are the pixels of the image. This will not however enable us to generate texture images as correlation between pixels is an essential part of texture modelling.

To introduce correlation in its most general form, we have to assume that all the pixels in the image are correlated and we have to consider all the pixels at the same time. This is impossible in practice due to the size of the sampling space (2^(n*m) for a binary image, k^(n*m) for a k grey level image). 

If we now assume that a pixel depend only on its neighbours, we have what is called a Markov Random Field. They are much easier to manipulate as changing one pixel in the image only affects its neighbours. They are a very powerful tool for image analysis and synthesis. For more information on Markov Random Fields, please consult your notes or any relevant book as the theory is out of the scope of this tutorial. I strongly recommend the tutorial from Charles Bouman that can be found at:

http://dynamo.ecn.purdue.edu/~bouman/publications/mrf_tutorial/view.pdf
In Brief, a random field is a Markov random field if P(X=x) has a Gibbs distribution. This means that P(X) can be expressed as:
[image: image2.wmf])

(

)

(

1

1

)

(

)

(

x

U

x

V

e

Z

e

Z

x

X

P

x

V

s

x

c

-

-

=

å

=

=

Î

where U(x) is an energy term depending on the vicinity of x. This can take any form and two of them are seen is this tutorial, the Binomial form seen in class and the Potts model. In the case of the Binomial model, P can be calculated directly from the neighboorhood to give PNt and the we can directly sample PNt. This is done in the program generate_MRF_Binomial.m which corresponds to the model seen in class.

In most case however, we cannot find Z in the expression of P(X=x) and cannot therefore use P directly. In this case the following procedure is followed:
· Create a random image of n grey levels.

· Iteratively change each pixel and calculate the likelihood (energy) associated to the change. The choice of the neighbourhood function is the choice of the user and will make the specificity of a given random field.

Keep a change if the likelihood is smaller.

Have a probability of keeping the change if the likelhood is higher. This probability ensures convergence to the global minimum of energy.

· Stop after n iterations or when no more changes are accepted.

You can see this as an analogy with physics. Imagine you heat a crystal until it melts and becomes liquid (our initial random state). Let it now cool down,  as the liquid cools down the crystal structure comes back (our MRF term) and slowly imposes a structure onto the initially random arrangement of molecules (our pixels). 

Try this now using the generate_MRF and generate_MRF_quick programs. 

After having tried with the current parameters, edit them, analyse them and try to modify the mask (energy function) and see the effect on the generated image.  As an indication, a directional mask will produce a directional texture.
As you can see, changing the MRF terms (parameters) in the mask changes the image generated. The same parameters also generate images that ‘look the same’. This can be used in texture synthesis. However, you should soon realise that it is not easy to find the right terms to generate a specific image type. What is normally done is the following: from a set of images we want to analyse, we extract the parameters of the MRF (estimation phase). Once this is done, we can now generate similar images. We can also just send the parameters of say a texture and regenerate it at the other end from the parameters, realising use compression efficiency.

Another are of application of MRF is de-noising. 

If you know the parameters of an MRF image (YOU DO NOT NEED TO KNOW THE IMAGE ITSELF!), you can very effectively de-noise it as we will show now.

First, create an image using a isotropic MRF model :

mask = [1/3 1/3 1/3; 1/3 1/3 1/3; 1/3 1/3 1/3] in generate_MRF;

Do ima = generate_MRF([32 32],2);

Now do 

denoise_MRF(ima);

This programs first adds a random noise to the image and then tries to recover the original image from the noisy version assuming it does not know anything about the original image apart from its Markov parameters. 

You should recover the original image. Please note that the program starts from the noisy image and does not know the original one!

How is this done?

Well, we now observe a noise data Y corrupted by noise n as Y = X+n. We know that X is  a Markov random field. We want to recover X. Therefore we want to find the most probable X, given the observed data Y: P(X/Y). Using bayes, we can rewrite this as P(X/Y)~ P(Y/X)P(X).

We know P(X) based on our Markovian model and P(Y/X) = P(Y=X+n/X) = P(n=Y-X). If we have a model for the noise (Here we have assumed a Gaussian Noise), we can evaluate P(n) and therefore evaluate P(X/Y) for each possible value of X and choose the most probable!

Again, in practice, a noise model is assumed (say Gaussian)  and the MRF parameters and noise parameters are iteratively estimated (EM technique for instance) from the data (our Y here), alleviating the need for the knowledge of the MRF parameters. 
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