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Abstract— This paper presents a novel framework for 
evaluating Target Detection and Classification algorithms 
and concepts of operations based on Augmented Reality 
(AR). Real sonar images and synthetic target models are 
used to generate a ground-truthed AR theatre of 
operation. The detection/classification results of the 
human operator or Automatic Target Recognition (ATR) 
algorithm to be evaluated are then compared to the 
mission ground-truth to obtain realistic performance 
measures. A separate seabed classification module 
permits to analyze these performance measures in terms 
of seabed texture complexity and clutter density. This 
approach permits the evaluation of Detection and 
Classification algorithms in a large variety of scenarios. 
The overall system is presented and evaluation on real 
data demonstrated. 

I. INTRODUCTION 

A. Background 
With the advent of Autonomous Underwater Vehicles 
(AUV), new mine hunting concepts of operations using 
very high resolution side scan sonars have appeared [1]. 
Because these platforms are autonomous, it is critical to 
develop embedded automatic target recognition (ATR) to 
enable on-board decision making, collaborative 
behaviours between heterogeneous platforms and 
sensors (detection, identification) and ultimately true 
autonomy with on-board re-planning capabilities. In the 
context of Mine and Counter Measures (MCM), the ATR 
performances of such platforms in a largely unknown and 
unstructured environment is critical.  So far, they have 
been partially validated by various military organizations 
(NATO Undersea Research Centre, US NAVY, US 
Marines) and their operational capability in mine hunting 
demonstrated in a number of real experiments [1]. 
However, they have not yet been fully characterized and 
their performances have not been systematically 
established. This is a critical part of any ATR system 
evaluation and has proven notoriously difficult in other 
fields such as Synthetic Aperture Radar where DARPA 
has funded the MSTAR project specifically to solve this 
issue [2].  
This paper presents a methodology to quantitatively 
validate Detection and Classification algorithms and 
concepts of operations for mine hunting in realistic 
environments. As such our main contribution is one of 
operational research based on advanced image analysis 
and pattern recognition techniques.  In order to 
implement the methodology, basic building blocks are 
required, drawing expertise from image processing and 
pattern recognition. The techniques presented here 
implement those building blocks but could be replaced by 

other techniques fulfilling the same functionality. 
However, for clarity, the techniques have been described 
in some detail. 

B. Relevant parameters for Planning & Evaluation 
In order to design and evaluate sonar platforms, several 
system and scene parameters need to be determined. 
AUVs are currently equipped with high resolution side 
scan sonar. The resolution of these systems is dictated 
by the frequency they operate at and the length of their 
aperture. Low cost systems, prevalent at the moment, 
operate at frequencies ranging from 600-1800 KHz (good 
across track resolution-5cm) and a relatively small 
antenna (25-50cm). They therefore have a comparatively 
poorer along track resolution (10-20cm). The dynamic 
range of those system is also limited (6-12 bits) making 
echo based detection difficult. Synthetic Aperture 
technology can improve along track resolution without the 
need for large antennas. Shadows are more defined than 
echoes and currently used for target classification. The 
discrimination for such systems is therefore very 
dependent on the precision of the shadow shape, which 
is determined by the along and across track resolution 
and the grazing angle. The shadow is the intersection of 
the projection of a 3D object with the seafloor surface 
and therefore also depends on the background on which 
the object lies. The type of seabed and more critically the 
3D variation of the seabed with respect to object height 
will determine how well the shadows can be defined. 
Finally, at a given resolution, it might not be possible to 
distinguish between real targets and mine like objects 
(MILOCS).  The following parameters are therefore of 
interest when studying evaluating target detection and 
classification algorithms: 
1) Sonar along track resolution, determined by the 

sonar aperture. Synthetic Aperture technology can 
improve along track resolution without the need for 
large antennas. 

2) Sonar across track resolution: this is determined by 
the operating frequency of the sonar. Higher 
frequencies will improve resolution at the expense of 
range. Optimum parameters should be chosen 
depending on the mission and be part of the planning 
tool. 

3) Seabed type: The interaction between the seabed 
and the targets will depend on the seabed type and 
bathymetry (marine growth, rocky structures) and the 
amount of perturbations they will provoke on the 
target echo and shadow.  

C. Methodology 
Finding a methodology to consistently assess AUV 
performances is complex. The performance will depend 
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on all the parameters described in section I-B.  Identifying 
the influence of each of them is critical to the future 
development of new systems and should help focusing 
the resources. Two approaches have been used in the 
past: 
1) Experimental evaluation: NURC and the US Navy 

have performed extensive experiments using real 
targets and real vehicles [1] (GOATS, BP02/03, 
various AUV Fests). However, these experiments are 
expensive to run and only a limited number of targets 
and situations they can be covered. Furthermore, 
ground-truthing is difficult, as target positions are not 
always precisely known. Therefore, extracting 
meaningful statistics and quantifying as opposed to 
qualifying the performance of a particular system is 
difficult. It is also unlikely that performance in one 
environment will extrapolate easily to another given 
the strong dependence of the side scan sonar 
imagery to environmental conditions and sonar 
systems.   

2) Evaluation by simulation: Sonar simulators are 
available to various degrees of realism [3] . Some of 
them can also simulate the seabed bathymetry. They 
are an ideal tool to predict the performances of sonar 
arrays. The environment can be simulated and 
synthetic mine fields produced. However, they are in 
general prohibitively computer intensive and 
sometime lack the realism of real systems as 
simplifying assumptions are made to render the 
models tractable [3]. 

We propose here to use augmented reality to combine 
the advantages of both approaches. Using real data, we 
stay close to the real sensor. A new simulation approach 
to simulate very realistic targets is presented, enabling 
ground-truth results to evaluate the ATR (computer or 
human) performances in various scenarios. The 
proposed solution is best described in Fig 1 The idea 
behind the proposed framework is to evaluate a system 
rather than its components. Therefore we start from the 
data produced by a particular system. The sonar data is 
used by the sonar inversion module to extract an 
estimate of the bathymetry (Z map) and reflectivity (R 
map) of the area and the beam pattern (Φ map) of the 
sonar. The simulation model locally modifies the Z and R 
map estimates to introduce simulated targets in the real 
image using the targets CAD model and their associated 
reflectivity maps. A Lambertian model is assumed for the 
targets. The output is a ground-truth simulated minefield. 
Any ATR system can then be used to determine the 
number of detection and false alarms present in the 
image and therefore evaluated on realistic data. In 
parallel, the original sonar images are classified into 
seabed classes and geo-referenced to produce a class 
map of the area covered by the sensor. Each detected 
target from the ATR is correlated with the class map to 
produce PD/PFA curves for each seabed type.  
 

 
This framework enables any system to be evaluated 
using its own data collected on real missions. The main 
benefits of the approach are: 

1) Real data is used. This is critical if meaningful 
evaluation is to be performed. 

2) Enables the system to evaluate ‘what-ifs’ scenarios: 
a. The Sonar resolution is changed, 
b. The reflectivity of targets is different,  
c. The targets are partially buried. 

3) Probability of Detection(PD)/Probability of False 
Alarm (PFA) on existing missions can be calculated 

4) PD/PFA and percentage clearance on future 
missions on similar terrain can be predicted. 
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Fig 1: Planning & Evaluation Framework: mixing real data 
and simulation 
 

D. Datasets 
Two large datasets have been used to validate the 
methodology presented here. Examples of typical images 
from both data sets are shown in Fig. 2. 
 
 

 
Fig. 2: Example of images from test missions. Top row: 
BP02 data set examples, bottom row: Baltic data set 
examples. 
 
The first data set was acquired over the Framura Area 
(Italy, South of La Spezia) during the BP02 experiment 
and will be referred as the BP02 dataset. It contains no 
targets, little clutter (i.e. mine like objects of mine 
dimensions). The seabed texture is varied:  88% of the 
mission is flat seabed, 6% is covered by sand ripples and 
6% by Complex seafloor (mainly posidonia, complex 
seafloor is described here as difficult to mine hunt). 235 
images covering approximately 1 square nautical mile 
were used. The second data set was acquired in the 
Baltic and contains some mine like objects. The seabed 
is mainly flat but some sections are highly cluttered by 
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mine like objects. 90 images covering approximately 0.5 
square nautical miles were used.  These two data sets 
enable to validate the system as they represent areas of 
varying mine hunting difficulty and are ‘orthogonal’ in 
terms of relevant seabed criteria (complex seabed 
texture - low clutter versus flat seabed - high clutter).   
 

II. SONAR INVERSION PROCESS 
Efforts towards the use of side-scan sonar for the indirect 
determination of seabed topography have been scarce 
[4][5][7]. The main reasons are the complexity of the full 
mathematical projection model and the high number of 
procedures required for preprocessing the original source 
data. In most cases where acquisition of seabed 
topography is important, attention is driven to more 
straightforward solutions such as multi-beam bathymetric 
systems. The idea behind the sonar inversion process[7] 
is to recover the main parameters involved in the sonar 
image formation. These are bathymetry, reflectivity and 
sonar parameters. The sonar parameters are here 
reduced to the beam pattern. The navigation effects, 
such as pitch and roll are ignored.   

A. Image Formation Model 
1) Side-scan Sonar 
The side-scan image formation process is briefly 
sketched in Fig 3. The sensor’s acoustic source at point 
o produces an ensonification pulse that illuminates the 
seafloor. Some of the acoustic energy reaching any 
seabed point p is scattered back and can be measured 
by the sensor. The intensity of the corresponding pixel of 
the side-scan image will depend on the amount of energy 
scattered back from the surface point. The pulse is not 
isotropic, but follows a particular beam-profile Φ that 
depends on the grazing angle α subtended by.p The 
amount of energy scattered back also depends on the 
seabed reflectivity R(p) at point p. 

 
Fig 3:  Side-scan image formation 

 
2) Scattering Model 
 
In order to model the scattering process we use the 
traditional Lambertian model. This allows the returned 
intensity to be derived from the observed scene 
parameters. This simple model for diffuse scattering 
assumes that the returned intensity depends only on the 
angle of incidence of the illuminating sound pulse, and 
not on the angle of observation or on the frequency of the 
pulse. Under these assumptions the intensity I returned 

from a seabed point p can be represented by the 
following expression: 

))(cos()()()( ppRpKpI rrrr θΦ=  (1
) 

where Φ represents the intensity of the illuminating 
sound wave at point p, R is the reflectivity of the seafloor, 
θ is the incidence angle of the wave front and K is a 
normalization constant.  In order to simplify the model, all 
the intensity variations caused by the sensor’s beam-
profile, the radial intensity decay and the possible Time-
Varying Gain (TVG) corrections are supposed to be 
grouped under the beam-pattern Φ. The dependence on 
the seafloor’s elevation is implicit in the incidence angle 

)( prθ , which depends on the grazing angle α from the 
acoustic source and the orientation of the surface normal 

)( pN rr . Making this dependence explicit, by expressing the 
cosine as a dot product of the surface normal and the 
direction of observation, gives the forward model for the 
computation of the intensity I at any point pr , given the 
model parameters R, Z and Φ: 
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(2) 

Where the gradients xZ ∂∂  and yZ ∂∂  can be 
approximated by finite differences, yielding an expression 
that depends directly on Z. 

B. Parameter Estimation 
 
1)  Normalization 
The values of the model parameters are limited to 
particular ranges, which have to be observed during the 
optimization process. Reflectivity values, by definition, 
have to lie between 0 and 1, but to avoid the model from 
collapsing in the darker areas, a lower bound Rmin greater 
than 0 is chosen on initialization (with a typical value of 
0.1). Intensity values for the incident sound wave are 
assumed to lie between 0 and 1, which would normally 
mean bounding Φ within that range. However, because 
Φ may include an unknown TVG, we allow it to achieve 
values greater than 1. In practice this amounts to just a 
little overshoot for the bigger angles, which naturally 
correspond to points of the seabed farther away from the 
sensor and therefore require higher TVG corrections. To 
ensure that solution parameters are kept within their 
respective value ranges during optimization, an 
appropriate normalization scheme is required. This 
normalization should also take into account that most of 
the source image intensity values are being affected by 
some kind of scaling (because of the TVG, the radial 
decay, etc). In order to do that we use the maximum 
achievable returns at every surface point to normalize the 
computed pixel values. Under this assumption we obtain 
the following normalization constant for the forward 
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model (1): 
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2) Expectation-Maximization 
Equation (4) provides a direct formula for estimating the 
returned intensity given the model parameters. But the 
inverse problem—obtaining the model parameters from 
the observed intensities—is clearly under-determined, 
since we only have one observation (of I) at each point to 
compute the values of the beam-pattern, height map and 
reflectivity. In order to solve this problem we use an 
expectation-maximization [6]. The model will iteratively 
converge to an optimal set of modeling parameters given 
a source side-scan image I. The objective is to minimize 
the absolute difference between the observed intensity I 
and the one resulting from the application of the model Î, 
which we represent by the error quantity E: 
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model parameters are used to compute an estimation of 
the intensity )(ˆ pI r . This is achieved by substituting the 
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iteration in the forward model presented in expression 
(4). 
In the maximization stage a straightforward gradient 
descent approach is used to minimize E, by updating the 
model parameters as follows: 
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where λ  is a small constant value used to control the 
rate of change (typically 0.25). The explicit dependence 
of the parameters on (x, y) has been removed equation 8 
for clarity. The expressions are iterated until the variation 
in the error E is below a given threshold. Results improve 
notably when using a multi-resolution version of the same 
algorithm. This allows the seafloor scene to be recovered 
in a more progressive as well as reducing the overall 
error at convergence. Implementation of the multi-
resolution version begins with the construction of a multi-
resolution pyramid by iterated sub-sampling of the source 
side-scan image. Processing starts at the smallest level, 
using the initialization and regularization procedures 
described in the previous sections. The resulting R, Z 

and Φ maps from one level are used as initial maps for 
the next resolution level. The process finishes when the 
final stage—corresponding to the full resolution image—
is processed.  

C. Results 
The method has been evaluated on a number of systems 
and produced very encouraging results on the two 
datasets described in section I-D.An example of solution 
obtained using Marine Sonics data is shown in Fig. 4. 
Full details of this technique can be found in more 
detailed publications [7]. 
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Fig. 4: Example of inversion on REMUS Data (BP02).  

III. SIMULATING MINE FIELDS VIA AUGMENTED REALITY 

A. Principle 
Once the Z,R, Φ maps from a Side Scan Sonar image 
have been recovered, it is possible to introduce simulated 
targets by modifying locally the Z and R maps. The 
Computer Aided Design model of the target and its 
reflectivity index (if constant) or associated reflectivity 
maps must be available. Once the Z and R maps have 
been modified, equation 4 can be used to render the new 
simulated image. Unlike other simulators which paste a 
simulated target on top of an existing image, this 
simulator enables the modeling of the interactions 
between the topography of the seabed and the target. 
For instance, if a target is place behind a 3D structure it 
should not be visible. The length of the projected shadow 
should also depend on the local elevation of the target. 
The principle of the target simulator is summarized in Fig. 
5: 
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Fig. 5: Augmented Reality Target Simulation Principle 

B. Parameters 
The parameters of the model are 
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1) Sonar Type: This is driven by the choice of images 
used in the sonar inversion process and is 
embedded into the Z,R, Φ maps. 

2) Target type: at present, two of the most common 
existing targets can be modeled. They have been 
named type A and type B for confidentiality reasons. 
More target types can be readily added if the 
Computer Aided Design models and reflectivity maps 
are known. 

3) Along / across track resolution:  can be changed by 
re-sampling the Z and R maps.  

4) Burial Depth: This can be changed by modifying the 
depth at which the target is embedded in the Z map.  

5) Target Reflectivity: This is simply modified by 
changing the target’s R map. This must be 
calibrated. At present the reflectivity of the seabed is 
normalized in the range [0,1] during the sonar 
inversion process. A calibration process should take 
place for each sonar to allow the precise setting of 
targets reflectivity.  

6) Target aspect: The aspect (angle) of the target with 
respect to the sensor can be set. 

7) Echo speckle. Side scan sonar uses coherent image 
formation. Therefore speckle is present on the target 
echo. This is modeled as an additive Rayleigh 
distribution in the reflectivity map. The parameters of 
the Rayleigh distribution can be adjusted to model 
realistic levels of speckle for each sonar.  

A large range of simulations can be run to explore the 
impact of those parameters on the mission performances 
(percentage clearance, number of false alarms, PD, 
PFA). 

C. Augmented Reality Simulation Results 
The simulator was tested on Marine Sonics and Klein 
sonars and the various parameters of the model 
changed. The Marine Sonics sonar has a 12cm along 
track and 5.8cm across rack resolution while the Klein 
has a 10 cm along track and 3 cm across track 
resolution. The Lambertian model used for the targets is 
a clear limitation of the actual model as targets (metal) 
are not Lambertian surfaces. This will be improved in the 
future to include more complex interaction models. 
 
1) Result for different sonar models 
 
An example of simulation of a two targets for the Klein 
5000 and Marine Sonic 900kHz are given in Fig. 6. The 
difference is resolution between the two sonars is 
noticeable as well as the difference in clutter level. Both 
set of images where obtained for a target reflectivity of 
one. 
 
2) Results for different target reflectivity 
The reflectivity of the target can be changed. This is 
important to model the saturation effect sometimes 
visible on sonar images due to the reduced dynamic 
range of the Sonars. FIG. 7 show an example where the 
resolution of the sonar has been kept to real values (5.8 
cm x 12 cm). and the reflectivity for the two targets types 
is 1 and 3. 

 

 
(a) 

 
(b) 

Fig. 6: Example of targets simulation (A ) using a Klein 
5000  (image a) and a Marine Sonics Sonars (image  b). 
 

Fig. 7:  Target A simulated with reflectivity indexes 1 (top) 
and 3 (bottom) 

 
3) Target interaction with complex Seabed 
The final demonstration shows in Fig 8 a simulated 
minefield on a typical seabed type containing flat, rippled 
and complex classes. This demonstrates the interaction 
with the seabed that this simulation enables through the 
extraction of the Z map. 

IV. CAD-CAC ALGORITHMS 

A. Introduction 
ATR systems for MCM are generally composed of a CAD 
(Computer Aided Detection) and a CAC (Computer Aided 
Classification) component [8] [9][10]. The aim of the CAD 
module is to detect all possible mine-like objects 
(MILOC’s), often at the expense of detecting many false 
alarms. The CAC component represents the second level 
of analysis, and is tasked with providing a measure of 
how ‘mine-like’ each of the MILOC’s produced by the 
CAD module are.  Based on the information provided by 
the CAD, the CAC must decide whether the MILOC is a 
target or a false alarm [9]. The performance of the CAD 
and CAC modules will be dependent on several 
parameters. Two important parameters are the sonar 
type (which will dictate the resolution of the side-scan 
sonar images) and the seafloor type the AUV is 
surveying. Assuming the resolution remains sufficient to 
resolve an object from the background, the CAD module 
is often able to provide high probability of detection (PD) 
values regardless of the specific values of these 
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parameters. However, as the conditions move away from 
the ideal scenario (high resolution sonar on a flat 
seafloor), this high PD rating will only be achievable if the 
probability of false alarm (PFA) is also increased. 

 
Fig 8: Example of simulated minefield on varied seabed. 
10 type A and 10 type B targets have been simulated on 
each side of an image containing a variety of seabed 
types (flat, ripples, complex). 
 
Current CAC systems use the shadow of the MILOC to 
provide a classification decision [17]. The effectiveness of 
the CAC module will be strongly correlated to both the 
sonar conditions and the seafloor type.  The ability to 
discriminate between a man-made object and a natural 
object is ultimately dependant on the number of image 
pixels present within the MILOC shadow region. The 
ability to both identify real alarms and remove false 
alarms will therefore decrease with sonar resolution. 
Conversely, the ability to classify should increase with 
across track range from the AUV, as object shadows 
become larger. Seafloor types containing their own 
shadow regions (such as rocks and sand ripples) add a 
further level of complexity.  The shadow regions from the 
background corrupt the shadow regions from the object 
making harder for the CAC module to determine whether 
shadow region belongs to the object or to the 
background.  An example of a simulated target on both a 
flat, ‘ideal’ seafloor and on a complex seafloor is shown 
in Fig 9.The object’s shadow can be clearly identified on 
the flat seafloor, but not on the complex one. 
 

  
(a) (b) 

Fig 9: Example of images containing 1 object sitting on a 
flat (a) and complex (b) seafloor respectively.   
 
The CAD and CAC modules use a model-based 
approach, where both the sonar process and the physical 
parameters of the objects being searched for are 
considered during the analysis process.  Therefore as 
AUV computational capabilities improve, the models can 

be continuously adapted to include more realistic 
information and simulations, resulting in improved 
performances. Full details on the CAD-CAC models 
presented here can be found in [13]. 

B. CAD Model  
This CAD module is an adaptation of the model 
presented in [13]. It is therefore summarized here. The 
CAD process can be broken down into several key 
operations. First the image is slant range corrected. 
Using the AUV navigation information, the across and 
along track resolutions of the image are determined.  The 
water column region from the centre of the image is 
removed as it contains no useful information. In a second 
stage, the surface return is automatically detected and 
removed and the image is segmented into regions of 
seabottom-reverberation, object-highlight and shadow 
regions using a Markov Random Field (MRF) model. 
Finally, obvious false alarms are removed from the CAD 
result in a post-processing phase by considering the size 
and height (determined from the shadow region) of each 
possible contact. 

C. The CAC Model 
The CAC module uses a model-based approach and 
provides a classification decision based on the shadow 
region of each detected object [9].  The CAC model can 
be split into key operations : 
1) The CAD sends the CAC a mugshot of the detected 

object. This is accompanied with the sonar conditions 
under which the object was detected (target position, 
across track distance, AUV altitude, sonar frequency 
and resolution, estimated object height and width) 

2) The CAC model generates shadow regions from 
different possible target objects under the same 
conditions that the object was detected. The 
simulation includes the sonar transfer function. Each 
tested target object is tested through an exhaustive 
set of possible object parameters such as depth, and 
orientation angle. The tested objects are cylindrical, 
spherical, type A and type B targets. 

3) For each object shadow, the similarity between the 
real object’s shadow and the simulated shadow 
region is measured. 

4) The best match from all the tested objects is stored. 
The simulated target shadows are produced using a 
quick line-of-sight sonar simulator and a height map of 
the object.  Simple beam pattern considerations are 
introduced by convolving the simulated shadow with a 
filter of variable size dependant on the beam angle and 
the range to the object.  This ensures that the edges of 
the simulated shadow regions have pixels which have a 
probability of being shadow OR non-shadow. This 
information is considered in the classification process. 
Fig 10 contains 4 objects from the CAD model.  Two of 
these are real objects (a type A target and a type B target 
produced using the simulator model described in a 
previous section) while the last two are real false alarms.  
The output from the CAC analysis is also shown. 
 

CAD Actual Best CAC CAC 
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Clutter 

 

0.82 
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Fig 10: Examples of the CAC input and output when 
analyzing the output from the CAD module. 
The two real targets both have a high target 
classification.  The correct target type has also been 
identified correctly. The first clutter objects have low 
classification values. The final clutter object has a high 
classification value and under the specific sonar 
conditions produces a shadow region very similar to that 
of a Type B Target. 

D. Production of Clutter Density Maps 
Clutter Density is a term given to the density of objects 
within a region having the correct sonar response and 
physical characteristics to be labeled as mine-like by the 
CAD.  Clutter density is a critical parameter to assess the 
ability of a system to perform target detection and 
classification. The clutter density depends on two main 
factors: the specific CAD used and the size and type of 
targets that the CAD is searching versus the scale of the 
seafloor 
Different CAD models operate using different 
methodologies to produce their results.  Different models 
will therefore produce different false alarms in different 
places when analyzing the same data (this and the 
assumption that the different CAD model methodologies 
detect most of the real objects are the driving principles 
behind why multi-CAD fusion is so successful [23]). 
Different CAD models will locally produce a different 
measure of the clutter density. However, we argue that 
the global cutter density order of magnitude will be stable 
irrespective of the CAD algorithm used and will mostly 
depend on the seabed characteristics. The size of the 
objects being looked for by the CAD is another important 
factor when determining clutter density. This size must be 
compared to the scale of the seafloor that is being 
surveyed.  Rocky seafloors are generally associated with 
high false alarm rates and therefore a high clutter 
density.  However, this is only true if the scale of the 
rocks is comparable to the size of the targets being 
searched for.  This section considers the second 
requirement – obtaining the clutter density maps.  The 
results show clutter density maps for the CAD model 
described in this paper searching for objects between 
0.25m and 1.5m in height and size. The clutter density is 
first determined on each individual image. The CAD is 
run on the individual side-scan sonar image after which 

the clutter density is computed per square meters.  To 
produce a large scale mosaic of the clutter density maps, 
the individual maps are geo-referenced into the frame of 
the survey region.  Many of the individual clutter density 
images overlap in this frame due to the lawn-mower 
trajectory traditionally used for MCM surveys. When this 
occurs, the mosaicing algorithm takes the maximum 
clutter density value – this ‘pessimistic’ approach ensures 
that the mosaic retains the worst case scenario and 
registers the highest possible density of mine-like clutter 
within each area.  

V. SEABED CLASSIFICATION 
Seafloor classification information has been identified as 
being critical for MCM operations.  The seafloor type will 
impact factors such as the overall visibility of any objects 
present, the number of expected false alarms and the 
probability of any objects present being buried.   

A. What classes for MCM analysis? 
Seafloor classification for MCM operations needs to 
consider both 
1) The texture of the underlying seafloor 
2) The clutter density of CAD detections.  
Extensive research has been carried out in seabed 
segmentation and classification using side scan sonar 
[12][14] but never in the specific context of MCM. Some 
highly textured area might not present difficulties for a 
detection algorithm while un-textured area with high level 
of clutter will. Sonar textures are generally 3D textures 
and it is the scale of the 3D variations with respect to the 
objects to be detected that ultimately will dictate the mine 
hunting difficulty. It is therefore crucial to determine the 
mapping between 1) and 2) and the MCM performance to 
generate class-maps which reflect mine hunting difficulty 
and not just texture (or complexity) or clutter density. For 
military purposes, seabed complexity has been classified 
on a scale of A to D while clutter density has been 
classified on a scale of 1 to 4. For instance a flat, low 
clutter density seafloor would provide a A0 classification 
while a high complexity, high clutter density would 
receive a D4 classification. However, a C3 might be 
equivalent to an A4 in terms of PD/PFA for a given ATR. 
The mapping between the somewhat artificial A-D/1-4 
classes to ATR performances is our end goal.  
This is an initial first step in defining a standard for 
classification of side scan sonar images where currently 
only 2 dimensions (texture and clutter density) have been 
considered. Further dimensions such as sediment type 
(sand, mud, clay) should be added if this information was 
available. Whilst sediment information may be retrievable 
from side scan sonar, it is possible that this would require 
the fusion of side scan sonar with another sensor. 

B. Single image texture model 
Seafloor classification using side scan sonar has been 
widely studied [12][14]. The model used here is a 
classical model based on texture features described in 
more details in [14]. The seafloor classification first 
segments the image into 3 classes (seabottom 
reverberation, shadow, highlights). The original side scan 
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image and the 3-class segmentation are inputs to the 
seafloor classification module. From these 2 images, 4 
features are extracted using sliding windows: 

• The Maximum Height of the Seafloor (from the 
segmented image) 

• The Mean Elongation of the shadow regions 
(from the segmented image) 

• Maximum Angular Fourier Energy (from original 
sidescan image) 

• Variance of the Angular Fourier Energy (from the 
original sidescan image) 

The outcome of one classification can be seen in Fig. 11. 

 
(a) 

 
(b) 

 
Fig. 11: Example of the seafloor classification (b) on a 
real side scan sonar image (a).  Black represents flat 
seafloor, yellow (light grey) is the complex class and blue 
(dark gray) is for sand ripples. 
 
The overall classification accuracy is acceptable. 
However, the classified image clearly contains miss-
classified regions. From testing multiple seafloor 
classification algorithms on different datasets, the authors 
believe that an accurate seafloor classification cannot be 
achieved by considering side scan images in isolation.  
Even the best classification module will produce isolated 
incorrect results as the imaging conditions (sonar, 
seafloor, AUV) are very variable and some areas of the 
seabed are imaged under poor imaging conditions. To 
produce an accurate classification result, it is necessary 
to fuse the individual class maps to produce a class 
mosaic.  This allows correctly classified regions to be 
verified and miss-classified regions to be identified and 
re-classified. 

C. Production of Class Mosaics 
Class mosaics can be produced by geo-referencing each 
of the individual class maps into the frame of the mosaic.  
The lawnmower trajectory used in MCM operations 
ensures that there are multiple classification results for 
many regions of the seafloor. This different information 
can be fused together to improve a classification result 
which is more accurate than any of the images 
considered in isolation.  The mosaic also allows the large 
scale characteristics of the seafloor to be seen.  This is 
not possible when considering the images in isolation.  
Geo-referencing the individual class maps from a MCM 
survey results in some areas of the seafloor having 
multiple classification results associated to it.  The fusion 
process uses the multiple classifications and initializes 
the final fusion map using a voting process.  Areas with 
conflicting classifications are left as unclassified. A 

Markov model is then used to smooth the final fusion 
result and classify the regions initialized as unclassified.  
Full details of the class map fusion process are available 
in [14] . 
For the BP ’02 data this produces a final class mosaic 
shown in Fig. 12.  As before yellow (light grey) indicates 
the complex seafloor, blue (light grey) represents the 
rippled class and the flat class is transparent (original 
side-scan mosaic can be seen).  There are no 
unclassified pixels left on the mosaic.  The light grey 
regions seen on the outside of the mosaic are for the 
unmeasured class – no class data is available for this 
region.  
There are still miss-classified regions, which have been 
identified as complex. Many of these regions correspond 
to objects on the seafloor. This problem is addressed in 
the next section.  
 

 
Fig. 12: Contains the fused mosaic obtained from 
considering over 200 class maps of the region.  The 
mosaic can be seen to contain miss-classified regions of 
the complex class.  The area has been classified as flat 
where the side scan mosaic can be seen 

D. Fusion of Class and Clutter Density Mosaics 
Section V-B and V-C described the texture based 
classification process used to segment the seafloor into 
regions of flat, rippled and complex. Section IV-D 
described the process to produce clutter density 
mosaics. The two models must be fused to produce a 
classification result, which is meaningful for MCM. As an 
initial step, the clutter density mosaic is simply used to 
identify and re-classify the miss-classified complex 
regions. The technique proposed below is shown to be 
an effective means of correctly classifying regions where 
the texture field has been corrupted by small objects lying 
on the seafloor. The clutter density and class map 
mosaics are fused at the initialisation phase when 
producing the class mosaic. After the voting process, the 
clutter density at each point initialized as complex is 
considered. Regions with a have a very low clutter 
density are re-initialised as unclassified.  This is because 
the clutter density is seen as too low to support the 
texture analysis decision that the region is complex.  The 
MRF model will again classify the unclassified regions 
using the surrounding contextual information. If the 
surrounding area is also complex (but presumably with a 
higher clutter density), the region can still be re-classified 
as complex.  Otherwise, the area will be classified as flat 
or rippled, depending on the contextual information.  
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E. Classification Results 
Results of the class mosaics produced from fusing the 
textural and clutter density information are provided for 
both the BP ’02 data set and the Baltic sea trial data.Fig 
13 contains the final classification result produced using 
the BP ’02 data.  All miss-classified complex regions 
have been identified and re-classified.  The object field, 
present within the middle of the mosaic, which previously 
contained multiple miss-classifications due to the 
corruption of the texture field, is now correctly identified 
as being flat seafloor.  
In some areas however, the visual evaluation by an 
operator would classify the seabed as complex while the 
algorithm classifies it as flat with a clutter density level 
too low to justify the complex label. This highlights the 
need for a more formal definition of the class maps in the 
context of mine hunting and points out the difficulties 
ahead in finding the appropriate mapping from texture 
and clutter density to mine huntability.   Finally, our notion 
of clutter density is so far a posterior notion as it is 
directly derived from the ATR system used. It is also 
dependent on the ATR system whilst clutter should be an 
a-priori notion. We are well aware of this and hope that a 
more formal definition of clutter can be learnt from the 
posterior examples and extended to a variety of ATR 
algorithms. 
 

 
Fig 13: Classification mosaic for the BP ’02 data using 
both textural and clutter density information.  There is a 
large improvement in classification accuracy from the 
result shown in Fig. 12. 

VI. SYSTEM EVALUATION 

A. Methodology 
In order to validate the system, the two complete AUV 
missions described in section I-D where used. The sonar 
images where inverted to produce the (Z,R,Φ) maps and 
40 targets per image (20 type A, 20 type B) were 
simulated at various angles. The reflectivity was fixed to 
1 and there was no burial. The seabed classification 
modules (classification + mosaicing / fusion) were run on 
both missions to generate class maps enabling the 
robust determination of the class of the seafloor under 
each object. Finally, the ATR system (CAD-CAC) was 
run and the PD/PFA calculated for each seabed type. 
Results are presented for the CAD-CAC of section IV but 
the methodology can be applied to any ATR system. The 
number of False alarms per square nautical mile was 
also recorded as we feel it is a figure that can be better 

interpreted operationally than the PFA generally reported 
as the number of false alarm is also an important 
parameter..  

B. CAC Results 
The results for the CAC show the probability of detection 
versus the number of false alarms per square nautical 
miles as opposed to the standard PD/PFA graphs. The 
curves are actually identical and the PD/PFA graph can 
be obtained by normalizing the FA rate by the maximum 
FA rate. We however argue that the PD/FA graphs are 
more informative as the critical information regarding the 
number of false alarms is not lost. The parameter varied 
to obtain the ROC curves is the degree of fitness 
between the model shadows and the segmented 
shadows. Again, PD/FA curves are obtained for each 
seabed type.  
The first set of results in Fig. 14 shows two runs of the 
system on the same mission, on flat and rippled seabeds  
demonstrating the stability of the ROC curves estimation. 
InFig. 15, results for two missions on flat and complex 
seabeds are presented. The Baltic trials are dash lines 
while the results for the BP02 trials are plain lines. 

 
(a) 

 
(b) 
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Fig. 14: CAC Results for two runs of the BP02 data.on 
flat seabed (a) and rippled seabed (b)  using the 
Planning & Evaluation framework proposed.  

 
(a) 

 
(b) 

Fig. 15: CAC Results for BP02 and Baltic data. On flat (a) 
and complex (b) seabed types using the Planning & 
Evaluation framework proposed.  
On complex area, the algorithm performances are 
comparable while on flat area, the high clutter of the 
Baltic data set leads to a much higher false alarm rate. 
The results clearly demonstrate the need for a more 
elaborated seabed classification. The Flat Seabed on 
both missions is of very similar nature but the Baltic 
mission has a much larger clutter density. This induces a 
much larger number of false alarms comparable to that 
obtained for complex seabed. For the Complex seabed 
class, the algorithm performs in a similar fashion in both 
missions as the complex seabed is similar to a high 
clutter density. This suggest that the clutter density – 
seabed complexity axis are not really orthogonal in terms 
of ATR performances and that a C1 (high complexity- low 
clutter) could in fact be equivalent to an A3 (Low 
complexity-high clutter). We would strongly support a 
study in this direction in the future to create a more 

realistic seabed norm for Side Scan and Synthetic 
Aperture Sonar. 
We can quantify the false alarm reduction rate of the 
CAC algorithms compared to the CAD for a similar PD. 
The results obtained are the following for the BP02 data: 

 Complex Seabed: 50%. reduction From 100000 
to 50000 per square nautical mile 

 Flat Seabed: 50% reduction. From 600 to 300 
per square nautical mile 

 Ripples: 90% reduction. From 10000 to 1000 per 
square nautical mile. 

The higher reduction for ripples can be explained by the 
fact that the ripples are largely of a different scale than 
the targets (~15cm for the ripples, 30-45cm for the 
targets). The false alarms on the complex and flat 
seabed are of a different nature (sonar artifacts for flat, 
mine like objects for complex) and more difficult to 
remove. 

C. How can this framework be used operationally? 
Within an operational context, the approach presented 
here will prove very useful. The AUV will first perform a 
mission, collecting all side scan and navigation 
information. The Seafloor Classification and Clutter 
Density will be estimated on each of the side scan sonar 
images to produce the seafloor classification mosaics 
fusing the seafloor and clutter density information. 
Representative Images containing areas of the different 
seafloor types present within the survey region will be 
selected to perform the evaluation. On this subset, Z (the 
Height Map), B (the Beampattern) and R (the Reflectivity) 
can be extracted. A Monte Carlo Simulation where the 
simulated targets are placed within the images can then 
be performed.  Various target types, aspect angles and 
burial depths can be simulated. Finally, the ATR system 
can be run on the generated images to produce PD/PFA 
curves for the different seafloor types present in the area. 

VII. CONCLUSIONS AND FUTURE WORK 
In this paper a framework for evaluation and planning 
AUV missions for MCM has been presented. It adopted a 
‘systems’ approach of the evaluation. The framework 
cornerstones are a sonar target simulator based on 
augmented reality and a seabed classification module 
enabling the determination of target huntability indexes. 
The former uses real data through a sonar inversion 
model to retrieve an estimate of the bathymetry and the 
reflectivity of the seabed. It enables the simulation of very 
realistic mine fields. The framework has been assessed 
on two real AUV missions by evaluating our exemplar 
CAD-CAC algorithms, but in principle it can be used to 
evaluate any other ATR system or human operator. 
Further research will concentrate on improving the Z, R 
and B inversions by reducing the parameter space 
considered and improving the optimization and 
regularization schemes. The scattering model used for 
the targets will be enhanced to include specular 
reflections. The system will also be extended to use 
bathymetry from other sources such as multibeam echo-
sounders and interferometric side scan. Finally the 
system could be extended to Synthetic Aperture Sonar.  
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