
PHD Filter Multi-target Tracking in 3D Sonar
Daniel Edward Clark, Judith Bell,

Yves de Saint-Pern and Yvan Petillot.

Abstract— The Probability Hypothesis Density (PHD) Filter
was developed as a method for tracking a time varying number
of targets without data association. The first order statistical
moment of the multiple target posterior distribution called the
Probability Hypothesis Density which is represented by discrete
samples or particles gives the expected locations of the targets.
This property is used instead of the full multi-target posterior
distribution as it is requires significantly less computation and
particle filter implementations have demonstrated the potential
of the algorithm to be used for real-time tracking applications.
In this article, an application of the Particle PHD Filter is
demonstrated to track a variable number of objects in three-
dimensional sonar images estimating both the number of targets
and their locations. The number of targets is estimated at each
iteration by computing the mass of the particle weights. The
locations of the targets are determined by extracting peaks of
the PHD which is a distinct task from the computation of the
particles. Previous approaches have used the Expectation Max-
imisation (EM) algorithm to fit a Gaussian mixture model whose
time complexity is quadratic in the number of targets which is
not ideal for a real-time tracking application and so alternative
clustering techniques are considered here. A comparison is made
between the methods for the accuracy of estimation, robustness
and the time taken. 12

I. INTRODUCTION

One of the goals of the subsea research community is
to develop Autonomous Underwater Vehicles (AUVs), self-
navigating robots which operate underwater. Such vehicles can
be equipped with a range of sensors including forward-look
sonar, sidescan sonar and video to enable them to navigate
autonomously and undertake a range of missions, for example
mine countermeasures, pipeline inspection or seabed habitat
mapping. In addition, a new range of high resolution 3D
acoustic imaging sensors, such as Echoscope are emerging. To
enable AUVs to operate successfully, methods for detecting
and tracking objects on the seabed are required to aid path
planning and navigation, as well as using these techniques as
an integral part of the mission. The obvious initial application
is to enable the vehicle to sense its environment and prevent
collision with any object. To enable it to do this effectively it
must track all objects within its field of view. This will include
both stationary objects on the seabed and moving objects in
the water column (including marine animals, divers and other
underwater vehicles operating in the vicinity). However, since
the vehicle is assumed to be moving at all times, even the
stationary objects will move in reference to the AUV frame
of reference.
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The ability to track the objects during the motion may
also lead to improved classification of the scene, since it
will essentially provide the 4th dimension and may provide
additional information as to how the return from the target
varies with time and with reference to the location of the
vehicle.

This paper will present a tracking technique based on the
Probability Hypothesis Density, illustrating the results using
data obtained from the Echoscope forward looking 3D imaging
sonar. The technique has previously been demonstrated on
two dimensional forward-scan sonar [1]. The paper will also
discuss the clustering methods used as an integral part of the
technique to extract the location of the targets, comparing
a range of techniques in terms of accuracy, robustness and
computational complexity.

II. THE PROBABILITY HYPOTHESIS DENSITY (PHD)

The theory for the multiple target tracking approach used in
this paper was derived by Mahler [2] from Finite Set Statis-
tics, a reformulation of point process theory, which provided
a mathematical framework for multitarget multisensor data
fusion. A recursive Bayesian approach for approximating the
first order statistical moment of the joint multitarget probabil-
ity distribution or Probability Hypothesis Density (PHD) was
proposed as an efficient means of tracking a variable number
of targets, this was defined as the PHD Filter. Data association
techniques are avoided as the identities of the targets are
not kept, this has a significant computational advantage over
traditional methods of multiple target tracking which couple
single target stochastic filters such as Kalman filters [3],
extended Kalman filters or particle filters [4] [5] [6] with a data
association strategy [7] for determining which measurements
are most likely for each individual track.

Particle filter methods for the PHD-filter have been devised
by Vo [8] and Zajic [9]. Practical applications of the filter
include tracking vehicles in different terrains [10], tracking
targets in passive radar located on an ellipse [11] and tracking
a variable number of targets in forward scan sonar [1].

This paper demonstrates an application of the Particle PHD
Filter to tracking a variable number of targets in a sequence
of three-dimensional sonar images. One of the advantages of
the PHD Filter is its ability to track objects in heavy clutter,
which is often the case in sonar data where there are many
spurious measurements due to noise and reverberation. The
measurements are taken in the sonar reference plane so that a
stationary object in the global or world reference plane will be
moving with respect to the underwater vehicle. Whilst many of
the objects to be tracked will be in the world reference plane,



there could also be moving objects which it may be necessary
to track such as fish. Thus the ability to track a variable number
of targets in the presence of missed detections and spurious
measurements is advantageous in this application.

A. PHD Filter Equations

The Probability Hypothesis Density (PHD) is the first mo-
ment of the multiple target posterior distribution [2]. The PHD
represents the expectation, the integral of which in any region
of the state space S is the expected number of objects in S.
The PHD is estimated instead of the multiple target posterior
distribution as it is much less computationally expensive to
do so. The time required for calculating joint multi-target
likelihoods grows exponentially with the number of targets
and is thus not very practical for sequential target estimation
as this may need to be undertaken in real time. The model
used here only calculates single target likelihoods and so is a
significant improvement on explicitly calculating joint multi-
target likelihoods[12].

The PHD is defined as the density, Dt|t(xt |Z1:t), whose
integral:

Z

S
Dt|t (xt |Z1:t)µ(dxt) =

Z
|Xt ∩S| ft|t(Xt |Z1:t)µ(dXt) (1)

on any region S of the state space is the expected number
of targets in S. The estimated object states can be detected
as peaks of this distribution. The dominating measure µ is an
extended Lebesgue measure, described in [8].

The derivation for the PHD equations is provided by
Mahler [2], the prediction and update equations are given by:

Dt|t−1(x) = γt(x) +

Z
φt|t−1(x,ξ)Dt−1|t−1(xt−1)µ(dxt−1), (2)

Dt|t (x) =

[
ν(x) + ∑

z∈Zt

ψt,z(x)

κt(z) + 〈Dt|t−1,ψt,z〉

]
Dt|t−1(x), (3)

where φt|t−1(x,ξ) = PS(ξ) ft|t−1(x|ξ) + bt|t−1(x|ξ),ν(x) = 1−
PD(x), κt(z) = λt ct(z) and ψt,z = PD(x)g(z|x).

In the prediction equation, bt is the PHD for spontaneous
birth of a new target at time t, PS is the probability of
target survival and ft|t−1(xt |xt−1) is the single target motion
distribution. In the data update equation, g is the single target
likelihood function, PD is the probability of detection, λt is
the Poisson parameter specifying the expected number of false
alarms and ct is the probability distribution over the state space
of clutter points.

B. Particle Filter Implementation

The implementation of the PHD Particle filter employed
here is an adaptation of the method described by Vo et al [8]
based on a sequential Monte Carlo algorithm for multitarget
tracking. The state vector for the tracker is defined as the
3D position and velocity vector: (x, ẋ,y, ẏ,z, ż). The algorithm
proceeds as follows, where steps 1 to 4 are repeated for each

iteration:
Step 0: Initialisation
In the initialisation stage, particles are uniformly distributed
across the field of view.
Step 1: Prediction
The particles are propagated using the dynamic model: xk+1 =
Fkxk +ωk where Fk is the transition matrix for the motion and
ωk is Gaussian noise. In addition, particles are added to allow
for incoming targets into the field of view.
Step 2: Data Update
When the measurements are received, weights are calculated
for the particles based on their likelihoods determined by the
distance of the particles to the set of observations. The sum
of the weights gives the estimated number of targets.
Step 3: Resampling
Particles are resampled from the weighted particle set. The
particle distribution is an unweighted representation of the
PHD.
Step 4: Target Extraction
Target locations are found by clustering the data using the
estimated number of targets as the number of clusters and
taking the centroids of the clusters.

III. CLUSTER ANALYSIS

In Step 4 of the algorithm, the locations of the targets are
determined by using a clustering algorithm to partition the data
and the target positions are taken to be the centroids of the
partitions. The different classes of clustering algorithms are
considered here for this task.

A. Overview of different clustering algorithms

The aim of cluster analysis is to find a classification of
data sets into homogeneous groups or clusters based on some
discriminative criteria. Three main classes of technique are
used in the literature[13]: agglomerative hierarchical clustering
techniques, optimisation methods and mixture models. In
hierarchical clustering, the classification contains a hierarchy
of clusters from a single cluster containing all the data down
to n clusters containing one item of data using a criterion for
discriminating the data. If n is the number of particles, then
the time complexity of the algorithm is O(n2 logn).

The second commonly used approach to clustering data is
to partition the data based on some optimisation criterion, for
example minimising the sum of square errors within each
group. For large data sets, comparing every pair of points
is impractical so usually a finite number of iterations are
computed until some convergence criterion is satisfied. An
example of this kind of technique is the k-means algorithm. If
n is the number of particles, k is the number of targets and t is
the number of iterations, then the time complexity is O(tkn).

The third approach is to fit a finite mixture to the data
based on a probability model. In the case here, the number
of components in the mixture would be the expected number
of targets. An example of this type of technique is using the
Expectation Maximisation (EM) algorithm to fit a Gaussian
Mixture Model to the data. Previous approaches to target



extraction with the PHD filter have focused mainly on this
method[10][11][1]. The time complexity for this algorithm is
O(tk2n).

If tk << n logn then k-means is the best from a purely
computational point of view, clearly if we have a large number
of particles then the hierarchical approach is not practical.

In the literature it is reported that the disadvantages of k-
means are that it often converges to a local optimum with
poor quality, it is not robust and it is statistically biased
and inconsistent. The EM algorithm is theoretically unbiased,
however the runtime is quadratic in the number of targets
which means that the time taken for each iteration is highly
dependent on the number of targets present which has proved
to be the bottleneck in current implementation of the PHD
filter. The implementation of k-means considered here has
been shown to give better results than the standard approach
using a more complex algorithm [14] and this is shown to
outperform the EM algorithm for the criteria chosen for com-
parison. Examples of k-means and mixture model techniques
have been implemented and tested on the clouds of particles
within the execution of the particle PHD filter.

B. Estimating the number of clusters

If the number of clusters is not known a-priori then it would
be useful to be able to determine this directly from the data.
In Bouman’s unsupervised algorithm for modelling Gaussian
mixtures [15], a measure of goodness of fit is found called
the Rissanen criterion or Minimum Description Length (MDL)
estimator. This works by attempting to find the model order
which minimizes the number of bits required to code the data
samples and parameter vector. The final number of clusters
chosen is the value which minimises the MDL over possible
values of k.

In the k-means or Lloyds algorithm, given a set of n data
points the problem is to minimise the mean squared distance
from each data point to its nearest centre called the average
distortion. A method of determining the correct number of
clusters is called v-fold cross validation which computes the
average distortion for each value of k. To analyse the data the
average distortion is plotted against the number of k, which
exhibits a scree-plot pattern, decreases rapidly as the number
of clusters increases and levels off around the true value. The
correct value of k can be estimated by looking at the gradient
of this graph although some judgement needs to be exercised
for the specific application.

C. K-means vs EM

The k-means and EM clustering algorithms [14] [15] have
been tested on particle cloud output for four iterations in the
PHD algorithm for different numbers of components k in the
clustering algorithms.

Ten targets have been simulated and particle outputs of
the algorithm have been analysed for four of the iterations,
see figure 1 for an example of the particle cloud output.
To compare the accuracy of the algorithms, the particle data
for the four iterations have been input into the clustering
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Fig. 1. Particle cloud for 10 simulated targets

algorithms for a range of k to assess how many clusters have
been correctly identified. In each of the examples, there are
10 different clusters with additional particles uniformly spread
for the introduction of new targets which can be viewed as
outliers for the clustering algorithms. The maximum numbers
identifiable when k < 10 is k and 10 when k≥ 10, the results
of this empirical evaluation are in the table. In every case,
the k-means algorithm has identified at least as many of the
targets as the EM algorithm and in most cases it has identified
more. The run time for the algorithms is shown in figure
2. As expected, k-means is significantly faster than the EM
algorithm except when k = 1 (in which case there is no need
for a clustering algorithm at all as one can just take the mean
location).

The two statistics used for estimating k are the Minimum
Description Length (MDL) for the EM algorithm and the
Average Distortion for k-means which calculates the mean
squared distance for the data points in each partition to its
centre. The minimum value for the MDL has been taken over
a range of values of k for the estimated value in the EM
algorithm and the derivative of the average distortion graph
has been taken and the result has been tuned for the data. The
estimated value for the number of clusters has been given in
the table. The k-means has outperformed the EM here, getting
the correct number 3 times out of 4, although the k-means has
been tuned specifically for this case and the EM could possibly
be tuned for a better approximation.

IV. 3D SONAR DATA

The 3D sonar data was supplied and obtained by QinetiQ
from an Echoscope forward-looking sonar with 64×64 beams
to provide instantaneous 3D data created from a single ping
rather than the 3D imagery obtained by stacking a sequence
of images from a conventional 2D sonar. This results in highly
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Fig. 2. Run time plot: k-means vs EM

Number of correctly determined centres

Iteration 2 Iteration 5 Iteration 10 Iteration 19
k EM k-m EM k-m EM k-m EM k-m
1 0 0 0 0 0 0 0 0
2 0 0 0 0 1 0 0 0
3 0 0 0 0 1 0 0 0
4 0 1 0 0 1 1 0 0
5 0 1 0 1 1 2 1 1
6 1 2 1 3 1 2 1 3
7 1 4 2 4 3 3 2 4
8 3 6 4 6 4 5 3 6
9 6 8 6 8 3 7 6 8

10 3 10 6 8 3 7 5 10
11 7 9 10 10 1 9 6 10
12 6 10 10 10 6 10 8 10
13 7 10 9 10 8 8 8 10
? 15 10 14 10 12 10 12 10

accurate positioning. The data is in the form of x,y,z and
intensity. The sequence of images used here demonstrates the
imaging of a complex midwater target involving weights of
different shapes suspended below surface buoys (see figure
3). The targets which are used for the tracking are the metal
objects below the buoys as they return strong intensities which
can easily be found by thresholding the data on intensity.
The measurements for the tracker are the centroids of the
data above the threshold: an example of the 3D data with
thresholded measurements is given in figure 4.

V. TARGET TRACKING RESULTS

The measurements obtained by thresholding the data on
the intensity are input into the tracker. The sequence is
of a stationary target in the water but the target positions
in the sequence will change due to a slight movement of
the target in the water. Initially, the particles are distributed
uniformly across the region where targets can be detected.
The distribution of particles represents the multimodal PHD
measure from which the estimated locations are found with

Fig. 3. Midwater target
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Fig. 4. Segmented Echoscope image

additional particles to allow for incoming targets. The number
of particles is adapted to be proportional to the expected
number of targets so that it can accurately track a variable
number of targets. After the first set of measurements, the
particles are given weights according to their distance from the
measurements. During resampling, particles with large weights
are represented more and those with low weights are killed off
so that the distribution more accurately represents the positions
of the targets. Figure 5 shows the initial distribution of the
particles across the bounded 3D region where measurements
are expected, after the first iteration the particles accumulate
around the target measurements (see figure 6). As only a small
proportion of the particles will represent the target location in
the first iteration, these particles will be resampled heavily and



Echoscope Tracking: iteration 0
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Fig. 5. Initial Particle Distribution

so the distribution of the particles is not particularly good.
After a couple of iterations however, noise is added to the
particles in the system model which will then better represent
the different targets (see figure 7). Due to the noisy nature
of sonar, spurious measurements are almost inevitable. The
clutter parameter κ is tuned so that measurements from regions
which were not predicted to have a target are not given as
much prominence in the PHD distribution. This means that
they will not immediately be detected as new targets and their
positions extracted in the clustering. Figure 8 illustrates an
example where a false alarm has entered and the particle cloud
is smaller than that of the two targets.

VI. DISCUSSION

This paper has shown the potential of using a multimodal
particle filter for tracking objects in 3D Sonar data. The sonar
data has been thresholded on intensity to locate the targets and
the measurements for the tracker have been found by finding
the centroids of the thresholded data which have been used
as input to the tracking algorithm. Previous implementations
of the PHD technique used Gaussian mixture models to
extract the target locations. A faster, more robust technique
for extracting the target locations based on k-means has been
used here which enables the algorithm to track more targets
faster. Future work will include investigating data association
between iterations in the PHD filter for track continuity.
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Fig. 6. Particle Distribution after first iteration

Echoscope Tracking: iteration 13
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Echoscope Tracking: iteration 56
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