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Abstract

In this paper we present a system for the automatic detection and tracking of
metallic objects concealed on moving people in sequences of millimetre-wave images,
which can penetrate clothing, plastics and fabrics. The subjects are required to
enter one at a time and turn round slowly to ensure complete coverage for the scan.
The system employs two distinct stages: detection and tracking. In this paper a
single detector, for metallic objects, is presented which utilises a statistical model
also developed in this paper. Target tracking is performed using a Particle Filter.
Results are presented on real millimetre-wave image test sequences and indicate
an excellent rate of success for threat identification. Encouraging results for target
tracking are also reported.
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1 Introduction

We present a system for the automatic detection and tracking of metallic ob-
jects concealed on moving people in sequences of millimetre-wave (MMW)
images, which can penetrate clothing, plastics and fabrics. The subjects are
required to enter one at a time and turn round slowly to ensure complete
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coverage for the scan. The long-term aim of this work is to develop a MMW
system to enhance the public security screening process for concealed threats.
For example, airport passenger screening which routinely employs metal de-
tectors. This papers focuses on the detection of concealed metallic objects,
presenting the performance in both detection and tracking. At this stage no
attempt to implement a real-time system has been made but because real-time
operation would be a requirement in the final application the computational
complexity of the algorithms developed is taken into account.

MMW imaging is emerging as an important modality for security and surveil-
lance thanks to recent advancements in MMW sensing technology. Providing
full monochrome images highlighting concealed threats opens the possibil-
ity to analyse shape and locate threats on the body, which is far beyond
the reach of conventional metal detection portals. A recently demonstrated
proof-of-concept sensor developed by QinetiQ (Sinclair et al., 2001) provides
video-frame sequences with near-CIF resolution (320 × 240 pixels) and can
image through clothing, plastics and fabrics. The combination of image data
and through-clothes imaging offers huge potential for automatic covert detec-
tion of weapons concealed on human bodies via image processing techniques.
Previous trials of the QinetiQ MMW sensor, involving the Department of
Transport and British Airport Authority (BAA), showed potential for passen-
ger screening at airports (Murphy et al., 2002), public event security (Sinclair
et al., 2001) and detection of illegal passengers in lorries. All trials involved
human operators.

The sequences in this paper are generated by an electro-optic sensor working
between infra-red (IR) and microwave wavelengths. The sensor forms an im-
age of the temperature received from the scene, which is a standing human
subject turning around slowly. Figure 1 shows examples of frames from a typ-
ical sequence considered in our work. A person turns around by 360◦ in front
of the sensor and is captured at video rate (12 frames per second). The person
is allowed to turn at their own speed, to allow for various levels of physical
ability but this normally takes approximately ten seconds (120 frames). The
temperature (and therefore the pixel intensity) is a function of the reflectivity,
emissivity and transmissivity of the scene surfaces. At the wavelength used,
metallic objects tend to appear bright as they are highly reflective, the human
body less bright as it is partially reflective, and clothes partially transpar-
ent. An illumination chamber is required for indoor operation (Coward and
Appleby, 2003) but does not expose the subject to harmful radiations.

To the best of our knowledge, very little work has been reported on the au-
tomatic analysis of MMW sequences or images. Basic image segmentation
(Slamani et al., 1999; Keller et al., 2000) has been reported with some suc-
cess. Shape identification on the segmented images (Slamani and Ferris Jr.,
2001) has been investigated and suitable shape descriptors proposed. However,
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Fig. 1. Example MMW sequence showing a human subject. Notice the speckle noise
pattern particularly apparent on the torso. Substantial smoothing which is applied
during image formation to minimise visual artifacts.

the image quality is poor with a small field-of-view and cannot be gathered at
frame-rate. Due to these limitations only a very constrained stationary scene
is considered. The proposed shape descriptors prove reliable under the opera-
tional constraints. In comparison, the QinetiQ sensor used in this paper is a
real-time, head-to-toe sensor with considerably improved image quality. More
recently, some work on the detection and segmentation of metallic objects
has been proposed (Haworth et al., 2004, 2005) for the QinetiQ sensor. Work
has also been presented on modelling image formation in the QinetiQ MMW
sensor (Grafulla-Gonzalez et al., 2005). Alternatively, image fusion (Varshney
et al., 1999; Xue and Blum, 2003) has been employed on MMW / Infra-Red.
While this work has produced good quality images for human operators, no
work has been reported on automatic detection in fused MMW-IR images and
it is not clear that there would be any benefit. The main contribution of our
work is therefore to apply advanced image processing techniques for the au-
tomatic detection of concealed weapons to a new video imaging modality of
potentially high value for many applications in public security.

This paper is organised as follows: Section 2 presents a statistical mixture
model. The mixture model is then used in Section 3 to develop a classifica-
tion strategy for millimetre wave images. The classification first examines the
sequence, then individual frames and finally regions of a frame to identify
possible threats. In Section 4 target tracking is presented that is designed to
improve the robustness of the threat detection and provide extended infor-
mation on the position of the threat on the subject. Results are presented in
Section 5 on real MMW sequences.

2 Mixture Models for MMW Images

MMW images offer good data for material discrimination as different materials
yield, generally speaking, different image properties. In analysing the image
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statistics it would be desirable to have an understanding of the full physical
process which could be incorporated in a model for the MMW image formation
process. However, given the complexity of the MMW imager and the exten-
sive amount of hardware calibration, software equalisation and interpolation
undertaken to produce a MMW image, this is an unfeasible task.

In this paper we adopt an approach modelling the differences in image prop-
erties statistically, using a weighted mixture model in which each pdf, fi, is
associated to a specific material:

fmix =
N
∑

i=1

αifi(θ) (1)

where αi is a weight and θ a vector of parameters.

To identify the best-fitting pdf for each material (incl. background, i.e., non-
figure pixels), we built a number of mixture models made by combinations of
standard distributions (e.g. Gaussian, Rayleigh, Laplacian), optimised the pa-
rameters with a standard Maximum Likelihood (ML) algorithm and picked the
best fitting combination for the observed image histograms using a Chi-Square
test. We started with background-only sequences (no subject) to identify the
background distribution. We then moved to sequences of scenes with a sub-
ject but no threats, then with a subject carrying threats (metallic objects).
The final result is a best-fitting mixture model for each material (types of
component distributions and parameters).

As a qualitative example, Figure 2 shows four histograms. The results of
the ML distribution fit for a scene containing a subject carrying no threats
are shown on the top row. Here, a two-component mixture model is used:
two Gaussians, leading to poor fit, and Laplacian-Rayleigh, showing good fit
and little overlap between component distributions. The results for a subject
scanned carrying a metallic object are shown on the bottom row. In this case
it is clear that a two class model (bottom left) is insufficient and that the
model must be adapted to continue to provide a good fit. The inclusion of a
specific PDF for metal improves the fit (bottom right). In particular it sig-
nificantly reduces the overlap between the background and body PDFs. For
these reasons, the identification of frames containing metallic objects is vital
to allow the correct mixture model to be employed.
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Fig. 2. Example of PDF fitting. A subject screened with no metallic objects fits well
with a Laplacian and Rayleigh (top right) but poorly with two Gaussians (top left).
However, a Laplacian and Rayleigh fit is not correct for a subject scanned with a
metallic object (bottom left) and requires the addition of a PDF to account for the
metal (bottom right). Note that the metal PDF is Uniform with a low probability
making it difficult to see, however, its effect can be seen on the overall fit of the
mixture model.

3 Classification of MMW Images

The development of the classification scheme is broken down into three stages.
The identification of sequences containing threats is addressed first (Subsec-
tion 3.1 and then the identification of individual frames containing threats
(Subsection 3.2). Finally an approach for the identification of specific threat
regions within each frame is presented (Subsection 3.3).

3.1 Identifying sequences containing threats

The presence of metallic objects changes the maximum temperature recorded
significantly, providing a good criterion to identify frames containing threats.
Within a sequence, the range of variation of the maximum image tempera-
ture provides a reliable measure of the presence of a threat when compared
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to a normalised threshold. After careful analysis of the test data set it was
determined that a single threshold, set on the range of variation of maximum
image temperatures, was suitable:

MAX(Imax
t ) − MIN(Imax

t )

MAX(Imax
t )

> 0.03 (2)

where Imax
t is the maximum intensity (temperature) for frame t. In contrast,

detecting which frames in the sequence contain objects is more difficult and
this is discussed in the next section. In theory, with the subsequent method
for identifying frames (Subsection 3.2) it would not be necessary to use this
approach to identify if the sequence contains a threat. In practice, however,
this technique is a computationally cost-effective method of determining if
each frame needs to examined individually for metallic objects.

3.2 Identifying frames containing threats

To solve the problem of identifying individual frames containing metallic ob-
jects we trained a Hidden Markov Model (HMM) (Rabiner, 1989) to detect
significant changes in maximum temperatures (i.e., image intensities). The
system was trained on 3 different sequences (a tall man, a female, a short
man). In our implementation, the data is first quantised into 10 levels and
the hidden field is composed of 2 states (threat,no threat). A Baum-Welch
algorithm (Rabiner, 1989) is used for parameter estimation, and a Viterbi al-
gorithm (Rabiner, 1989) to determine the optimal state sequence. Figure 3
shows the maximum temperature signal for six sequences, with the variation
in level, range and type of signal obvious.

While it would have been possible to approach this problem using empiri-
cally determined rules and thresholds, as demonstrated in Section 3.1, this
would have produced a complex decision that would have required continual
updating. The HMM approach avoids these explicit rules and thresholds. Fur-
thermore, the HMM could easily be retrained on extended data sets should a
specific problem present itself. Retraining might be justified if changes in the
sensor’s environment was significantly changing the thermal response of the
sensor. However, this has not proven necessary so far.

3.3 Locating threat regions within frames

We now turn to the problem of locating the image region corresponding to a
metallic object in frames classified as containing threats. It is important to
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Fig. 3. Examples of the variation in level, range and type of signal found in different
MMW sequences. The three sequences on the left do not have a metallic object
present. The three sequences on the right do have a metallic object. All frames in
the six examples were correctly classified by the HMM.

remember that the target application could require close to real-time operation
and that techniques relying on extensive computing resources may not be
suitable. For this reason, two alternative techniques were considered: k-Means
and Expectation Maximisation (EM). The k-Means clustering technique can
be viewed as a simplified variant of the EM clustering technique. This provides
us with a direct trade-off between accuracy and efficiency.

The first technique, k-Means unsupervised clustering, uses a simple statistical
measure, the sum of the squared Euclidean distances from the mean of each
cluster, and has been well investigated in the literature for a range of appli-
cations (Kanungo et al., 2002). It has the distinct advantage of having low
computational costs. However, k-Means is biased towards finding symmetric
clusters and this cannot be guaranteed for the PDF mixture models selected
in Section 2.

The second technique, Expectation Maximisation (Bilmes, 1997), uses a Max-
imum Likelihood Estimate to recompute the pdf parameters until a conver-
gence criterion is met. We initialise the mixture model to the one containing
the optimal distributions for the background-body-metal case (as defined in
Section 2) with default parameters. Notice that this is not strictly necessary
for the EM algorithm, but improves the convergence speed significantly.

An example of comparative results is shown in Figure 4. The results show a
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Fig. 4. Comparison between a k-Means (top) and EM (bottom) clustering, showing
the original image, resulting image and the PDF overlaid onto the histogram.

typical case from our experiments, with k-Means providing a poorer PDF fit
in comparison to EM. The resulting image is an acceptable approximation to
the EM clustering with some degradation in performance. This reflects the
theoretical trade-off between accuracy and performance, as EM is consider-
ably more expensive than k-Means. Further work on approximate techniques,
such as the k-Means, may lead to an optimal trade-off should computational
complexity become a significant issue for system implementation. However,
extensive field trials would be required to establish if acceptable levels of per-
formance are met.

An example of working threat location is shown in Figure 5 using EM clus-
tering, where the estimated threat region is highlighted in white.

4 Tracking threat regions

4.1 Problem Introduction

The results of the classification stage applied to sequences of persons carrying
metallic threats is twofold: a set of frames showing possible metal threats, plus,
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Fig. 5. Expectation-Maximisation segmentation (bottom row) of a scene containing
a potential target in a MMW image (top row). The frame identification has worked
well with the correct number of classes employed in the classification at all stages.

in each such frame, the regions corresponding to possible threats. Such regions
are characterised by frame number, centroid, and area. To obtain further ro-
bustness and to provide a reliable estimate of the location of each threat on
the subject, the threat regions can be now be tracked throughout a sequence
for as long as the region remains visible. The subject is requested to undertake
a constrained motion and, while we do not know their true motion, it is this
constraint on the subject’s motion combined with the tracking that can help
us to achieve the accurate and reliable performance necessary for a public se-
curity application. The problem is made more difficult by the noisy nature of
the MMW images being operated on.

Tracking objects in visible-wavelength sequences is a well-studied problem in
image processing and computer vision (Trucco and Plakas, 2005; Comani-
ciu and Meer, 2002; Comaniciu et al., 2003). Particle filters (PF) (Arulam-
palam et al., 2001) are a powerful class of algorithms removing the Gaussian-
distribution constraint typical of Kalman filters. They also provide robustness
against clutter, a significant problem in MMW images given the noise charac-
teristics. A common problem with PF is the degeneracy problem where after
several iterations all but a few particles have negligible weights. For this reason
the Regularised PF (RPF) (Arulampalam et al., 2001) has been developed to
have an improved re-sampling stage, helping to avoid the degeneracy problem
by calculating the effective number of particles in the system and when neces-
sary replacing particles with a small weight (ineffective particles) with a new
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set of particles while maintaining a good distribution of particles across the
state space.

4.2 Particle Filter Models

Target tracking with the RPF requires the definition of two models: a system

model defining the evolution of the state with time and a measurement model

which relates the measurements to the state. Associated with these models are
noise sources: process noise vt and measurement noise nt. A detailed derivation
of the inference problem for the PF can be found in (Arulampalam et al., 2001).

Using the current classification scheme (Section 3) the state vector can contain
any of the following: centroid (position) (x), velocity (ẋ), area (φ) and average
gray-level (intensity) (I). Through manual observation it was determined that
the average gray-level provided limited consistent information. In contrast,
the area component can provide important information to supplement the
position and velocity components in providing a robust estimate. For these
reasons, the state vector was selected to contain the position, velocity and
area of the target:

xt =
(

xt ẋt yt ẏt φt

)T

(3)

For our application a linear Gaussian system model using the following stan-
dard state space model for a constant velocity model and random walk model
for the area (see (Bar-Shalom and Fortmann, 1988), for example) proved suit-
able:

xt =





























1 T 0 0 0

0 1 0 0 0

0 0 1 T 0

0 0 0 1 0

0 0 0 0 1





























xt−1 +





























T 2/2 0 0

T 0 0

0 T 2/2 0

0 T 0

0 0 T





























vt−1, (4)

and observation model:

ot =















1 0 0 0 0

0 0 1 0 0

0 0 0 0 1















xt + nt. (5)

vt and nt are the process and measurement noise components respectively,
which are uncorrelated, and ot is the observation vector. Noise components are
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assumed Gaussian as this proved sufficient for this tracking scenario. Note that
this is not a restriction of the Particle Filter and alternative noise distributions
could be employed in the future if required.

4.3 Particle Filter Tuning

All parameters were selected through detailed testing to provide optimal per-
formance across all test sequences. For the number of particles used in the
system a value of 2000 was determined to be the preferred trade-off between
accuracy and computational cost. As a starting point for position and veloc-
ity the motion was observed to be slow and uniform (<3 pixels / frame) in
the test sequences, suggesting corresponding prediction variances of 10. Due
to the high level of noise within the image classification a higher level was
required for the measurement variances, with a final value of 50 used. Finally,
it is important to allow for the unpredictable area changes associated with
our illumination environment, forcing the related covariance components to
be significantly greater than those of position and velocity.

Using the state vector shown in Equation 3, the covariance matrices Cvt and
Cnt, of process noise vt and measurement noise nt, employed in our experiments
were:

Cvt =















10 0 0

0 10 0

0 0 100















(6)

Cnt =















50 0 0

0 50 0

0 0 1000















(7)

5 Experimental results

5.1 Target Detection and Tracking Accuracy

To evaluate our system, eight test sequences were employed, four with subjects
without a threat and four with subjects carrying a threat, giving a total of 1629
frames and including 137 frames where a threat is visible. Table 1 summarises
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Table 1
Test Sequences Employed

Sequence Frames Threat No. Threat Frames

Plain01 211 No —

Plain02 252 No —

Plain03 218 No —

Plain04 236 No —

Threat01 242 Yes 24

Threat02 155 Yes 27

Threat03 179 Yes 56

Threat04 136 Yes 30

Total 1629 4/8 137

the details of the test sequences. In each test sequence the subject is required
to enter the sensor, stand with legs slightly apart and arms slightly raised
before turning through 360 degrees. The crucial aspect is to avoid the subject
occluding a specific body part from the sensor. The number of frames varies
between sequences because subjects where allowed to rotate at their own speed
and were allowed to include some minor unrequested motion, such as pausing
or arm waving. A small handgun was used as the metallic threat and this
was concealed under the subject’s clothes in various positions. The number of
threat frames is the total number of frames across the entire sequence that the
threat is visible. The number of consecutive frames a threat is visible varies
depending on placement. For example, threats on the front or back of the
body are only occluded by the trunk but threats on the side can be occluded
by both trunk and arms resulting in more frequent but short-lived occlusion.

Table 2 shows the results of the sequence threshold (Subsection 3.1) in col-
umn 2 and the HMM frame identification (Subsection 3.2) in columns 3-5.
The HMM results give percentage error in classified frames (Error) with a
breakdown of target frames missed (Emiss) compared to false alarms (Efalse).
The results clearly show that the two-stage threat identification performed
very effectively. The missed target frames were primarily in situations where
the target was identified through shape rather than intensity. Figure 6 pro-
vides an example. This suggests that a shape-based detector combined into
the system could improve reliability and robustness of the system.

Finally Table 3 shows results for the EM classification and RPF target track-
ing, giving the average number of targets (true target + clutter) per frame for
the sequence and RMSE of the tracked position. The ground truth for the tar-
get position was manually tracked and is accurate to ±2 pixels. It can clearly
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Fig. 6. Two example frames showing where the metallic threat object can be identi-
fied solely from the intensity (left) and where only the shape of the object identifies
the threat (right - threat is on the subjects right hip).

Table 2
Threat Identification with the sequence threshold (Subsection 3.1) in column 2 and
the HMM results (Subsection 3.2) in columns 3-5. The HMM results provide the
overall error (Error) and the breakdown in errors due to false alarms (Efalse) and
errors due to missed frames (Emiss). Frames with a threat and false alarms (clutter)
were considered to be correctly identified. The sequences identified as having no
threat were no examined on a frame-by-frame basis.

Sequence Threat? Error Efalse Emiss

Plain01 No — — —

Plain02 No — — —

Plain03 No — — —

Plain04 No — — —

Threat01 Yes 8% 0% 100%

Threat02 Yes 3% 0% 100%

Threat03 Yes 5% 22% 78%

Threat04 Yes 8% 0% 100%

be seen that excellent target tracking results have been achieved, even in the
sequences with considerable clutter (Threat01, Threat02). The comparatively
poorer tracking results seen in Threat02 are due to the very short time span
over which the threat is visible (approx. 9 frames on each occasion compared
to an average of 15 frames for other sequences). In this instance, the particle
filter does not have enough time to converge. Some example frames from the
RPF target tracking are shown in Figure 7.
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Table 3
Target Tracking showing the average number of targets (true threats + false alarms)
and tracking accuracy (Root Mean Square Error in pixels) for the true threat.

Sequence Average Targets RMSE

Threat01 2.4 8.1

Threat02 2.1 11.6

Threat03 1.3 5.1

Threat04 1.1 5.5

Fig. 7. Example of RPF tracking a target over the short period of time during which
the target is both visible and well illuminated.

5.2 Computational Performance

For the results presented in this paper, the average processing time per frame
was 0.83 seconds per frame on an Intel Pentium 4 (2.66GHz) running Fedora
Core. This breaks down to 0.79 seconds for EM classification and 0.04 seconds
for RPF filter tracking. It is likely that significant performance gains could
be made with k-Means classification as proposed in Section 3.3. The complete
system was written in C++ but no attempt has been made to optimise the
computational performance of the code. Real-time operation of this system,
with the MMW imager working at 12 fps, would be possible given suitable op-
timisation of the software and selection of an appropriate hardware platform.

6 Conclusions

We have presented a novel system for the automatic detection and tracking
of metallic objects concealed under clothes using MMW sequences. The re-
cent emergence of MMW video sensors makes our work very timely. To the
best of our knowledge, no previous system combining MMW video imaging
and advanced image processing techniques has been reported to date. Results
have proven reliable on the current data test set. Further work that would
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be required for this system to be operational would include a real-time im-
plementation and extensive field-trials to determine accuracy, reliability and
robustness in full scale operation. The requirement for real-time operation
has been considered in this paper and work presented that would allow real-
time operation given a suitable implementation on an appropriate hardware
platform.

The long-term aim of this work is to develop a MMW system to enhance the
public security screening process, such as airport passenger screening. This will
involve work on detecting and characterising a wider range of threat materi-
als, extending the range of tracking scenarios and incorporating human body
models to improve tracking and provide 3-D visualisation preserving privacy.
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