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Abstract— In this paper, new tools for obstacle avoidance and
path planning for underwater vehicles are presented. The authors
technique, based on a level set formulation of the path planning
problem, extracts optimal paths from complex and continuous
environments in acompleteand consistentmanner. Fast Marching
algorithm is known to be efficient for finding cost optimal path
in mobile robotics because of its reliability, precision, and simple
implementation. Fast Marching algorithm originally propagates
a wave front to isotropically explore the space. We propose
an anisotropic version of Fast Marching by adding directional
constraints in a cost function to minimize. We then propose a
path planning method able to deal with vectorial fields of force
for the first time. Furthermore we explore the relation between
the curvature of the optimal path and the cost function generated
from scalar and vectorial constraints. This a priori knowledge
of the influence of the environment on the final path curvature
allows us to propose a solution to make sure a path is reachable by
the vehicle according to its kinematics. Amultiresolution scheme
based on an adaptive mesh generation is eventually introduced
to speed up the overall algorithm. Results are shown computed
from real and simulated underwater environments.

I. I NTRODUCTION

In mobile robotics path planning issue is mostly addressed
for wheeled robots moving on 2D surfaces fitted out with
high rate communication modules. Underwater environment is
fairly more exigent. It is unfriendly to communicate, prone to
currents and the set of possible paths is a 3D space. Moreover
underwater torpedo like vehicles are strongly nonholonomic,
contrarily to wheeled robots capable to easily stop and rotate.

Literature proposes many methods such as potential field or
roadmap methods (see for example [1] for a concise overview).
They are either not complete or computationally expensive as
soon as the environment becomes complex [2].

The method we describe in next sections is a part of the
cell decomposition approach. The map of the environment is
first divided into a set of cells. The adjacency of the cells is
represented as a connectivity graph which is then searched to
find a channel from start to goal configurations. Practically
these approaches are widely used in mobile robotics because
they are very suitable to sensor images decomposed in a grid

of pixels. The key issue is then to use an efficient graph search
algorithm to find a path through a network of cells connected
by cost links.

Breadth-first search, heuristic search and hybrid search (like
A*) algorithms are very popular in path planning [3]. Their
principle is always to build a distance map weighted by costs
of obstacles. The construction is performed by evolving a level
set front from the start point (seen as a source) to the goal
point to reach. The optimal path is then found by performing
a descent backtracking on the distance map from the goal point
to the source of exploration.

These "best-first" search algorithms are complete (they
converge to a solution if one exists) but they suffer from
metrication errors. Results of these discrete graph-search algo-
rithms can be improved by taking a larger neighbourhood as a
structuring element but they are still not consistent, there will
always be an error in some directions that will be invariant
to the grid resolution [4]. It is not the case with the Sethian’s
Fast Marching (FM) algorithm [5].

Fig. 1. On the left Euclidean distance computed with a 4-connexity breadth-
first algorithm gives square level sets. On the right, the distance is computed
with Fast Marching, giving circles.

Fast Marching algorithm is also a Dijkstra’s like graph-
search algorithm but is consistent in the continuous domain.
The idea behind FM algorithm is to improve the update of
expanded nodes by approximating the first derivative of the
distance map while respecting the entropic flow. For the same



O(n. lg(n)) complexity, wheren is the number of nodes, FM
algorithm provides better approximations for level sets as we
can see on the figure 1.

The original Sethian’s Fast Marching algorithm is based
on an isotropic assumption of the free space. However as FM
algorithm explicitly estimates the gradient of the distance map
which can be interpreted as the moving direction, it is possible
to take directional constraints such as winds or currents
into account. This feature is interesting for path planning in
underwater environment. Theory of anisotropic Fast Marching
was first developed by Vladimirsky [6]. We propose in this
paper a simplified implementation of his method to speed it
up with regard to smooth underwater fields of force.

It has been shown [4] that the curvature of an optimal path
found after a functional minimization is explicitly bounded by
gradient of the initial cost function. We extend this result to
our anisotropic FM method which allow us to introduce the
vehicle’s kinematics as a constraint to make sure the optimal
path reachable by a nonholonomic underwater robot.

Finally we propose a multiresolution scheme to speed up the
overall method in order to cope with hard real-time constraints
of autonmous underwater path planning. The method proposed
by the authors is to couple an octree decomposition with an
adaptive mesh generation.

The structure of the paper is as follows. Section II presents
the Sethian’s Fast Marching algorithm and curvature con-
straints induced with this technique. We propose in section
III our anisotropic version of Fast Marching and an extension
of Cohen and Kimmel’s results on path curvature. Section IV
presents some results, our multiresolution approach and opens
a discussion about limitation and future work.

II. FAST MARCHING ALGORITHM

Given a discrete map of obstacles, our goal is to find a
global cost optimal path between two points. We first translate
the map of obstacles into a cost functionf . Then the "cost
optimal" question leads to algorithms that seek for the minimal
path, that is to say the path along which integration overf is
minimal. Inspired by the paper of Cohen and Kimmel [4] we
begin with comparing path planning problem with geometrical
optics in physics.

A. Geometrical Optics

The Fermat principle in optics is the physical interpretation
of minimal paths described in next sections.

The Fermat principle stipulates that the path of monochro-
matic light is the shortest in term of time. Into an homogeneous
environment the light velocity is constant so sets of points
reached at a given time are circles and minimal paths are
straight lines (left subfigure 2).

Let’s now consider an inhomogeneous environment sepa-
rated by an interface as shown in the right part of figure 2.
We assimilate in that case the cost functionf to the refractive
indexn, f = n. The speed of light can be writtenv = c

n = c
f .

Since speed of light is faster on the top part than on the
bottom, light tends to stay above the interface and it yields the

Fig. 2. Examples of optimal paths with one or two constant values for the
cost function.

refractive effect well known in Snell-Descartes laws. Optimal
path is the one that minimizes the timeT between two points
p0 andp1 : T = 1

c

∫ p1

p0
fds.

B. Problem Formulation

We are looking for paths along which the integral off is
minimal. The distance mapU is defined as the minimal energy
integrated along a pathC between a starting pointp0 and any
point p:

U(p) = inf
Ap0,p

E(C) = inf
Ap0,p

{∫

D

f((s))ds

}
(1)

whereD is the image domain andAp0,p is the set of all paths
betweenp0 andp.

The minimal path betweenp0 and any pointp1 in the image
can be easily deduced from the distance map. Assuming that
cost functionf is stricly positive, the action map will have
only one local minimum which is the starting pointp0, and
the minimal path will be found by a simple backtracking on
the distance map. This characteristic makes Fast Marching
algorithm very reliable which is important for an autonomous
oriented underwater path planner.

C. Fast Marching Resolution

In order to compute the distance mapU , a front-propagation
equation related to equation 1 is solved:

∂C

∂t
=

1
f

~n (2)

where~n is the normal to the front. This Eulerian formulation
for curve evolution was introduced by Osher and Sethian [7]
to overcome numerical difficulties and handle topological
changes. A front starting from an infinitesimal circle shape
aroundp0 is evolved until the goal point is assigned a value
for U .

Fast Marching technique, introduced by Sethian [5], was
addressed by Cohen and Kimmel [4] who noticed that mapU
satisfies the Eikonal equation:

‖∇U‖ = f and U(p0) = 0 (3)

Classic finite differences schemes for this equation tend
to overshoot and are unstable. Sethian proposed to use the



Godunov Hamiltonian which is a one-sided derivative. It looks
to the up-wind direction of the moving front, and thereby
avoids the over-shooting of finite differences. At each pixel
(i, j), the unknownu satisfies:

(max{u− Ui−1,j , u− Ui+1,j , 0})2 +

(max{u− Ui,j−1, u− Ui,j+1, 0})2 = f2
i,j (4)

yielding the correct viscosity solutionu for Ui,j .

Fig. 3. A front propagation relative to the cost function on the left.

The originality of Fast Marching is to introduce an order in
the selection of grid points. This order is based on the fact that
information is propagating outward, because distance can only
grow due to the quadratic equation 4. Fast Marching algorithm
is detailed in table 1.

TABLE I

ALGORITHM FOR 2D FASTMARCHING

1) Definitions
• Alive is the set of all grid points at which the distance valueU

has been reached and will not be changed;
• Trial is the set of next grid points to be examined and for which

an estimate U ofU has been computed using equation 4 only
from Alive points;

• Far is the set of all other grid points, for which there is not yet
an estimate forU

2) Initialization
• Alive set is confined to the starting pointp0, U(p0) = U(p0) =

0;
• Trial - the initial front is confined to the neighbors ofp0 with

initial valuesU(p) = f(p);
• Far is the set of all other grid points,U = ∞;

3) Loop
• Let p = (imin, jmin) be the Trial point with the smallest

distance U;
• Move it from the Trial set to the Alive set (i.e.Uimin,jmin =
Uimin,jmin is frozen);

• For each neighbor (i, j) (4-connexity in 2D) of (imin, jmin):
a) If (i, j) is Far, add it to the Trial set and compute a first

estimate U ofU using equation 4
b) If (i, j) is Trial, update the distanceUi,j using equation 4

D. Algorithm for 2D Up-Wind Scheme

Notice that only Alive points are considered to solve equa-
tion 4. We examine neighbors of point (i, j) in 4-connexity,
see figure 4.

Let {A1, A2} and {B1, B2} are the two opposite couples
with U(A1) ≤ U(A2), U(B1) ≤ U(B2), and U(A1) ≤
U(B1). Considering thatu ≥ U(B1) ≥ U(A1) equation 4
becomes:

(u− U(A1))2 + (u− U(B1))2 = f2
i,j (5)

Fig. 4. On the left example of a new Alive point only surrounded by one
other Alive point, on the right a new Alive point surrounded by at least two
other Alive points.

Based on the discriminant test delta of equation 5, one or
two neighbors are used to solve it:

• if fi,j > U(B1)− U(A1)

thenu =
U(A1)+U(B1)+

√
2f2

i,j−(U(B1)−U(A1))2

2
• elseu = U(A1) + fi,j

E. 3D Fast Marching

An extension of Fast Marching algorithm to three dimen-
sions is easy to develop. Similarly to the 2D case distanceU
is defined as follows:

U(p) = inf
Ap0,p

{∫

D

f(C(s))
}

(6)

whereAp0,p is the set of all paths betweenp0 and p inside
the 3D domainD.

Given a start pointp0 a front evolves starting from an
infinitesimal spherical shape aroundp0. The 2D numerical
scheme of equation 4 is extended to 3D:

(max{u− Ui−1,j,k, u− Ui+1,j,k, 0})2 +

(max{u− Ui,j−1,k, u− Ui,j+1,k, 0})2 +

(max{u− Ui,j,k−1, u− Ui,j,k+1, 0})2 = f2
i,j,k (7)

giving the correct viscosity solutionu for Ui,j,k.

F. Kinematic constraints

In this section we explain the influence of a cost functionf
on the curvature of the final optimal path. Following the paper
of Caselles, Kimmel and Sapiro on geodesic active contours
[8], the curvature radiusr along the geodesic minimizing the
functional

∫
D

f((s))ds is bounded by:

r ≥ infD{f}
supD{‖∇f‖} (8)

This result gives us a nice interpretation of the connection
between cost functionf and curvature along the resulting
optimal path. It is useful because, given any map of obstacles,
we can knowa priori if the optimal path will be reachable or
not by the vehicle. We just have to compare the turning radius
R of the vehicle with the limit of the curvature radiusrlim of
the path:



• if R < rlim, it is certain that the minimal path will be
reachable.

• if R ≥ rlim there is a risk of collision. In that case we
just have to smoothf to increase the curvature limit until
rlim > R.

III. A NISOTROPICFAST MARCHING ALGORITHM

A. Introduction

The theory of anisotropic Fast Marching was first developed
by Vladimirsky [6]. The principle is to make the cost function
f dependent not only from scalar cost of obstacles but also
dependent on vectorial cost of forces. Vladimirsky formally
demonstrates how the characteristic of the distance map can
be used for this purpose.

In this section we propose a simplified implementation of
his method by considering the gradient explicitly defined in
expression 5 as an approximation of the characteristic. This is
equivalent to assume that the field of force~F is quite smooth.
Original Sethian’s FM rapidity relies on the resolution of the
simple quadratic equation 5 foru. Sincef appears as a square
in this equation our idea is to build a new cost function linearly
dependent onu.

B. New cost function

We split the cost functionf in two parts by defining a
new cost functionf̃ = fobst + fvect. fobst remains linked to
obstacles as previously andfvect is defined as follows:

fvect(i, j) = α
(
1− 〈∇ui,j · ~Fi,j〉

Qi,j

)
≥ 0 (9)

whereα is a positive gain andQ is a normalization term so

that ∀(i, j) ∈ D
∥∥∥ 〈∇ui,j · ~Fi,j〉

Qi,j

∥∥∥ ≤ 1.

It is equivalent to say that a force favours the vehicle when
both force and vehicle are pointing in the same direction.

Fig. 5. On the left positive and negative actions of force applied to a mobile
vehicle, on the right appearance offvect.

C. Anisotropic problem formulation

The problem for anisotropic FM becomes the same than
for isotropic FM. We are looking for paths along which the
integral off̃ = fobst +fvect is minimal. DistanceU is defined
as the minimal energy integrated along a path between a
starting pointp0 and any pointp :

U(p) = inf
Ap0,p

E(C) = inf
Ap0,p

{∫

D

f̃(C(s))ds

}
(10)

whereAp0,p is the set of all paths betweenp0 and p on the
image domainD.

Resolution of our anisotropic version of Fast Marching
algorithm has just to be slightly modified to compute more
precisely a first estimate of Far points. But the overall res-
olution is exactly the same than the one for isotropic Fast
Marching by replacingf with f̃ (see figure 6 for illustration).

Fig. 6. On the left an isotropic Fast Marching, on the right our anisotropic
version (currents are symbolized with arrows).

D. Kinematic constraints

For isotropic Fast Marching the curvature radiusr along the
geodesic is bounded. In this section we extend this relevant
result to our anisotropic Fast Marching version.

We start from the previous result of section II.F. Given a

cost functionf , the curvature radiusr =
∥∥∥∂2C

∂s2

∥∥∥
−1

along the

geodesics minimizing
∫

D
f((s))ds is bounded by infD{f}

supD{‖∇f‖} .

With our new cost functioñf one can show that:

r ≥ infD{fobst}
supD{‖∇fobst‖}+ 2α

infD{Q}‖JF ‖∞ (11)

where JF is the Jacobian of~F on D and ‖ · ‖∞ is the
L-infinity norm.

The conclusion is that to increase the curvature radiusr we
have two main choices:
• Smoothingfobst to decreasesupD

{ ‖∇fobst‖
}

.
• Smoothing the vectorial field of force~F to decrease
‖JF ‖∞.

IV. A PPLICATIONS IN UNDERWATER ROBOTICS

We present in this section some results from real and
simulated 2D underwater environments.

A. Isotropic Fast Marching

1) Non-convex obstacle:Fast Marching algorithm associ-
ated with a gradient descent algorithm naturally overcomes
local minima (which may be induced by concavities) since
start point is the only global minimum (see figure 7).



Fig. 7. On the right the optimal path corresponding to the map on the left.

2) Complex map:Fast Marching algorithm is efficient with
complex obstacle maps such as the one illustrated figure on 8.

Fig. 8. The optimal path on the right corresponds to the obstacle map
(1000x1000 pixels) on the left.

Minimal paths are necessarily close to obstacles. To
increase the safety distance of paths from obstacles, we just
have to enlarge the highest values of cost function. A single
morphological operation is required.

3) Real application: A C++ implementation of 2D Fast
Marching method has been performed in the laboratory applied
to real sonar images (figure 9).

Fig. 9. From up to down and left to right, original sonar image, processed
images and optimal path.

Sizes of these real images are 200x50 pixels. Time com-
putations are about 10 ms for Fast Marching and 1 ms for
gradient descent.

B. Anisotropic Fast Marching

We present here a simple example of our anisotropic Fast
Marching implementation. Figure 10 shows how currents can
influence optimal paths.

Fig. 10. On the left an isotropic Fast Marching, on the right our anisotropic
Fast Marching with currents symbolized with arrows.

C. Kinodynamic motion planning

We have seen in sections II.F. and III.D. that given a map of
obstacles (and possibly a map of currents) we are able to know
if the minimal path will be reachable or not by the vehicle.
If not the cost functionf (or f̃ ) has to be smoothed. Figure
11 gives an example of the influence of the curvature limit to
optimal paths.

Fig. 11. On the top, from left to right, cost function corresponding
respectively torlim = 14, 34, 140. On the down part, the related optimal
paths.

D. Multiresolution path planning

A multiresolution method starts with the idea that it is not
necessary to represent the entire grid with a high uniform
resolution. We propose in this section a combined method to
make it usable for real-time 3D underwater applications.

1) Octree decomposition:The octree decomposition is
one of the most popular multiresolution approach. Although
the computational cost saving of this method is obvious,
see for example [9], the initial image is transformed in
a tree data structure which is not very convenient to keep
a clear knowledge of the spatial neighbourhood of each block.

2) Fast Marching on meshes:The method proposed by
the authors is to couple the octree decomposition with an
adaptive mesh generation. The Delaunay triangulation is a
good candidate as fast and robust implementations exist.
Input of this mesh generation is the set of nodes with their
cost links given by the octree decomposition, output is the
net of vertices linked to their neighbors by cost edges.



Inspired by works of Sethian and Vladimirsky [10] we
implemented Fast Marching algorithm on multiresolution un-
structured meshes. Figure 12 illustrates our method.

Fig. 12. On the left the original 1000x1000 image, on the middle the
adaptive mesh with only 1400 vertices, on the right the optimal path found
by backtracking on the interpolated distance map.

The overall multiresolution method requires five steps.
First an octree decomposition of the orignal image, secondly
a Delaunay mesh generation, thirdly a Fast Marching on the
mesh (instead of performing it on the grid), an interpolation
of the distance map (computed on mesh vertices) on grid
points and a gradient descent on the interpolated distance map.

This method is approximately 1000 times faster than a brute
Fast Marching on uniform cartesian grids for similar looking
paths (see figures 8 and 12 to compare paths).

E. Limitations and future work

1) Noisy conditions:If Fast Marching algorithm is applied
to noisy images its convergence to the optimal solution is not
guaranteed any more. Figure 13 illustrates the problem.

Fig. 13. From left to right, a noisy (Gaussian white noise) map and two
possible paths.

Image pre-processing is required before any Fast Marching
computation on real data. This issue depends on the sensors
used but for most of the cases it can probably be achieved
with probabilistic methods (like Markov fields or Bayesian
methods).

2) Anisotropic Fast Marching: We defined fvect =
α

(
1− 〈∇u·~F 〉

Q

)
≥ 0 for fvect to be linear foru. This choice

allows small runtimes but most of underwater vehicles have
a more complex behaviour than a linear reaction to currents.
In that case an acceptable first order approximation need
to be known. Sophisticated vehicle’s models can be used
for performing an anisotropic Fast Marching by building
complex hamiltonians [6] but the method is not fast any more!

3) Multiresolution path planning:We have seen in section
IV.D. that our multiresolution method is much faster than
building a distance map on all the uniform grid of an im-
age. Results look similar however we need at this stage an
analytical tool to compare quality of resulting optimal paths.

V. CONCLUSION

This paper contributes to improve four key issues for
underwater path planning.

The reliability and autonomy abilities of path planners to
cope with low bandwidth channels in the water are improved
by introducing a complete and consistent algorithm called Fast
Marching.

We proposed a practical implementation of anisotropic Fast
Marching to make our path planning method robust to hostile
underwater currents.

Path adequation with underwater robot kinematics was
addressed in a discussion about influence of the cost function
on the path curvature for both isotropic and anisotropic Fast
Marching algorithms.

High computation costs due to the extra third dimension are
drastically reduced thanks to a multiresolution approach.

The overall method is validated on real and simulated 2D
sensor inputs. These tests let some questions open for future
work. They especially highlight the need of an objective tool
to compare quality of "optimal" paths.
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