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Abstract—This paper describes and evaluates a concurrent
mapping and localization (CML) algorithm suitable for localizing
an autonomous underwater vehicle. The proposed CML algorithm
uses a sidescan sonar to sense the environment. The returns from
the sonar are used to detect landmarks in the vehicle’s vicinity.
These landmarks are used, in conjunction with a vehicle model, by
the CML algorithm to concurrently build an absolute map of the
environment and to localize the vehicle in absolute coordinates. As
the vehicle moves forward, the areas covered by a forward-look
sonar overlap, whereas little or no overlap occurs when using
sidescan sonar. It has been demonstrated that numerous reobser-
vations by a forward-look sonar of the landmarks can be used
to perform CML. Multipass missions, such as sets of parallel
and regularly spaced linear tracks, allow a few reobservations of
each landmark with sidescan sonar. An evaluation of the CML
algorithm using sidescan sonar is made on this type of trajectory.
The estimated trajectory provided by the CML algorithm shows
significant jerks in the positions and heading brought about by
the corrections that occur when a landmark is reobserved. Thus,
this trajectory is not useful to mosaic the sea bed. This paper
proposes the implementation of an optimal smoother on the CML
solution. A forward stochastic map is used in conjunction with a
backward Rauch–Tung–Striebel filter to provide the smoothed
trajectory. This paper presents simulation and real results and
shows that the smoothed CML solution helps to produce a more
accurate navigation solution and a smooth navigation trajectory.
This paper also shows that the qualitative value of the mosaics
produced using CML is far superior to those that do not use it.

Index Terms—Concurrent mapping and localization, mosaics,
sidescan sonar, smoothing.

I. INTRODUCTION

THE ADVENT of autonomous underwater vehicles
(AUVs) has posed a number of new challenges to the

robotics research community. Among these challenges, the
question of true autonomy remains unresolved. Autonomy can
be defined as the ability to provide for oneself without the help
of others. Unmanned underwater vehicles (UUVs), be they
AUVs or remotely operated vehicles (ROVs), are not yet ca-
pable of navigating without receiving position fixes from either
a global positioning system (GPS) or acoustic transponders.
They are not genuinely autonomous in the navigation sense.
Navigation itself poses three distinct questions: “where am I?”,
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“where am I going?”, and “how should I get there?” [1]. This
paper will focus on the first of these questions.

Most UUVs are equipped with dead-reckoning sensors, such
as a Doppler velocity log (DVL) and inertial rate gyros or
magnetic compasses [2]–[5]. These types of sensors suffer from
drift; thus, the error in the vehicle’s position will grow without
bounds. To fix the position of the vehicle on the world frame,
absolute-positioning sensors are used. Commercial absolute-
positioning sensors adapted to the underwater environment
include acoustic positioning systems; such as super short, short,
and long baseline (LBL) navigation. Currently, the state of
the art in applied inertial navigation for small UUVs includes
support from DVL as well as acoustic short- and long-baseline
navigation systems [5]. All of these systems require the vehicle
to be within a volume of water that they cover, therefore
restricting the vehicle’s exploratory capabilities and not allowing
for true autonomy. This has motivated the underwater navigation
community to investigate and develop terrain-based navigation
[6]–[10] and CML [11]–[14] systems.

Terrain-based navigation uses a priori known terrain charac-
teristics to localize a vehicle through observations. The more
recent CML concept builds a map of previously unknown land-
marks and concurrently localizes the vehicle in the map [1],
[15], [16]. Our chosen approach is the stochastic map proposed
by Smith et al. [17]. The stochastic map is essentially an aug-
mented extended Kalman filter (EKF). As a new landmark is
observed, it is simply added into the state vector. Reobserva-
tions of landmarks provide state measurements and, thus, allow
drift corrections. The sensor chosen to perform CML must allow
perfect data associations and numerous reobservations of land-
marks. If the observations are matched with the wrong land-
marks, the stochastic map can break down. This paper assumes
that the data association produces perfect matches and sidesteps
this problem. For a discussion on the data-association process,
refer to [18].

Given the task at hand, i.e., localizing an underwater vehicle,
sonar is the most appropriate choice to sense the surroundings.
Using a forward-look sonar allows multiple reobservations of a
landmark, as shown in Fig. 1. The CML process relies on the
reobservation of landmarks and past work used forward-look
sonar. The effectiveness of CML using forward-look sonar and
stochastic map has been demonstrated and much work has been
already carried out on this subject, including demonstrations
using real data [11], [18]–[20].

Sidescan sonars are downward looking and are not useful
CML sensors for missions where only one pass of the sea floor
is performed (Fig. 1). For multipass missions, such as sets of
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Fig. 1. Sidescan and forward-look sonar. As the vehicle moves forward, the
regions covered by the forward-look sonar overlap (right). No overlap occurs
when a sidescan sonar is used (left).

parallel and regularly spaced linear tracks where the separa-
tion between the parallel tracks in the trajectory is less than the
sonar maximum range, these sensors might prove to be a useful
ally. Sidescan sonars provide far higher quality images than for-
ward-look sonars, which will help the data association. Parallel
and regularly spaced linear tracks are commonly used in survey
missions and sidescan sonars are an essential part of a survey
AUV’s payload. Their use for CML should, therefore, be con-
sidered seriously.

A great number of papers discussing image segmentation,
classification, registration, and landmark extraction have
already been published [21]–[26]. Data-association algorithms
for CML have also received considerable attention [18], [20],
[27]–[31]. Other papers address the issue of data association in
the context of sonar images [32] and some address the issue of
matching sidescan images [33]. High-quality images provided
by sidescan sonar will help the data association process (see
Fig. 2).

In most survey missions, a landmark on the sea bed is ob-
served two or three times. The efficiency of CML with such a
small amount of reobservations must be assessed. Section II will
examine this process and evaluate the efficiency of the system.

Observations, by correcting the drift, create jerks in the es-
timation. Thus, trajectory estimation using conventional CML
solutions remain unsuitable for some data exploitation tech-
niques, such as georeferenced mosaicing. CML using sidescan
sonar will require an appropriate smoothing postprocess. Post-
processing the navigation solution given by CML is examined
in Section III. The final section will show mosaics obtained
with real data, which show that the smoothed CML solution
can be used to produce high quality coherent georeferenced
images.

II. CML USING SIDESCAN SONAR

This section examines the use of CML using returns from a
sidescan sonar and describes the stochastic map, a common and
well-founded technique used to perform CML. This will be done
in the first subsection. Section II-B will describe the implemen-
tation of CML techniques with a sidescan sonar. In Section II-C,
a number of simulation experiments will be thoroughly exam-
ined. These experiments will demonstrate the usefulness of the
stochastic map when using a sidescan sonar. The experiments
will also compare the performance of a sidescan sonar system
to a forward-look system.

Fig. 2. Data association. These images of different targets show that (left)
forward-look sonars provide poorer quality images and (right) sidescan
sonars provide higher quality images. High-quality images will help the
data-association task considerably.

A. Stochastic Map

The stochastic map is an augmented-state EKF [34], [35].
In this incarnation, the filter now holds the relevant states of
the vehicle and those of the landmarks in a single-state vector.
The advantage of this method is that it allows us to continually
update and maintain the vehicle-to-vehicle, landmark-to-vehicle
and landmark-to-landmark correlations. Recent research [36]
has demonstrated the advantages obtained by maintaining these
correlations. This research has motivated our choice of approach.
Under this architecture, the state vector assumes the form

(1)

where is the transpose of a vector or matrix, holds the state
of the vehicle and hold the state of the landmarks.
The estimated error covariance for this system,

...
...

. . .
...

(2)

where the submatrices , , and are the vehicle-
to-vehicle, vehicle-to-landmark, and landmark-to-landmark
covariances, respectively.

The state and covariance are updated according to the EKF
update equations. The stochastic map assumes fixed landmarks.
Observations that were not associated to an existing landmark
will be added to the stochastic map state and covariance as new
landmark states.

The new map state vector will be

(3)

where the position of the new landmark

(4)

Here, is the function that outputs the landmark state with
input parameters and , the new observation vector. The
new covariance and correlation terms will be

(5)

where and are the Jacobian of (4) with respect to the
robot vehicle state , evaluated at , and to the new observa-
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tion , evaluated at and is the measurement error
covariance.

The problem associated with the stochastic map is that, as
the number of landmarks increases, the computational burden
increases in time, where is the number of states
in the filter. This has motivated a number of research groups
to decouple the filter, effectively ignoring the correlations.
Some of these efforts have yielded good approximations of
the full stochastic map. The most relevant of these are the
covariance intersection [14], [31] and the decoupled stochastic
map [13]. These efforts show promising results. However, they
are approximations to the full map and some recent telling
work shows that ignoring the correlations can be very much
counterproductive [37]. An alternative approach is to keep
the number of landmarks within a set limit [38]. This paper
focuses on a postprocessing implementation and the actual
processing requirements have not been considered.

B. Implementation

The stochastic map algorithm has been implemented to
operate in a simulated environment with both types of sonar:
sidescan and forward-look. A suitable vehicle model has
also been implemented to estimate the position of a generic
underwater vehicle. The models are detailed as follows.

a) Vehicle model: The dynamic model must be compat-
ible with all kinds of vehicles (tow-fish, torpedo shape AUV,
manipulation UV, ). A centrilinear constant speed and con-
stant yaw model fits these requirements and involves all the usu-
ally available data. More accurate dynamic models could have
been chosen, but they are less flexible. The dynamic equations
of the chosen model are

(6)

where denotes the speed, the heading with respect to the
north (clockwise), are the vehicle-position coordinates
with respect to an east/north frame, and and are zero-
mean, white, and Gaussian process noise speed and heading
errors.

This model has been found to yield accurate estimates for
this kind of problem and, given a suitable update rate, no diver-
gences due to nonlinearities have to be feared. The gap between
the actual dynamics and the model must be represented in the
process noise to allow convergence and correct estimation. The
process noise must take the unknown yaw rate and acceleration
into account.

b) Sonar observations: For a vehicle using a for-
ward-look sonar, returning range, and angle with respect to
the vehicle frame, the observation vector will be .
Following this, the prediction for landmarks will be

(7)

Fig. 3. Simulation results. The observations of the ten landmarks allow
correction of the position estimate.

Fig. 4. Concurrent mapping and localization. The radial position error and the
corresponding estimate, obtained from the covariance matrix terms for the CML
solution, grow until the landmarks are reobserved. When these events occur,
the sensor position error decreases. The error then grows again until another
landmark is reobserved. The navigation radial position error and the estimated
radial error for the dead-reckoning solution keep growing without bounds.

where is the heading of the vehicle with respect to the world
frame and , are, respectively

(8)

(9)

The coordinates with respect to the world frame of landmark
and of the vehicle are and , respectively.

The equation for initializing a new landmark is

(10)

A vehicle using a sidescan sonar will return range to the land-
mark and the observation vector will be

(11)
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Fig. 5. Mean radial-estimation error. One point is plotted per simulation.
CML improves the estimate obtained by dead reckoning. The forward-look
sonar demonstrates the best performance.

where the cross-track distance is computed from the range to
the target and the height to the sea floor and the along-track
distance is computed from the height to the sea floor and the
pitch . The prediction of the target observation will be

(12)

where is a rotation matrix defined as

(13)

New landmarks will be initialized, given

(14)

C. Simulations

To evaluate the efficiency of CML, a simulator has been de-
veloped. A trajectory is generated. Compass and DVL measures
are generated with bias noise for the compass and scale-factor
errors for the DVL. The starting point coordinates (0,0) are
assumed to be known. Landmarks are randomly spread in the
area covered during the mission. The occurring time of obser-
vations are computed according to the sonar characteristics.
The observation vectors are generated with noise. The DVL
is assumed to have a 0.5% scale factor error and is affected
by a m/s white noise. The compass is assumed to
have a 0.2 bias and is affected by a white noise.
They both provide measurements at 1 Hz. Noise on the for-
ward-look sonar has been taken into account and modeled as

m on range and on bearing. The sidescan
sonar measured distances have m cross-track noise.
As pitch is not measured on all UUVs, noise corresponding
to a maximum pitch of 4.5 at 10 m of altitude has been sim-
ulated. The simulator assumes that the sidescan sonar cannot
observe anything over a predetermined yaw rate. The range
of the forward-look sonar is 75 m with a 90 field of view
and provides images at 1 Hz. The sidescan sonar is a two-side

Fig. 6. Maximum radial-estimation error. The maximum radial error at any
point in the trajectory is plotted for each simulation. Sonar-based CML again
outperforms the dead-reckoning solution and, again, the forward-look sonar
performs the best.

system with no blind-range zone. The range for both sides
is 30 m in order to provide high-resolution images for the
mission needs. The data association is perfect; there are no
mismatches between landmarks.

1) Behavior of CML Using Sidescan Sonar: Figs. 3 and 4
show the results of a simulation. With only two observations
for seven of the landmarks and three observations for the three
remaining landmarks, the stochastic map algorithm yields satis-
factory position estimation and landmark localization. The final
estimate has a 1.4-m error, whereas the drift in the dead-reck-
oning navigation was 3.99 m. The worst-position estimate has
been reduced from 6.25 m down to 3.81 m. The localization of
the landmarks is achieved with a mean radial estimated error of
1 m and a maximum estimated radial error of 2 m, derived from
the stochastic map’s covariance matrix. The estimated error is
shown to evolve in a manner similar to the actual radial error
and can be considered to be a suitable approximation. The al-
gorithm’s behavior is very close to the one predicted by the
theorems expressed in [36]. In a set workspace, the root-mean-
square (rms) error is well bounded. The algorithm seems to be
robust to nonmodeled scale-factor errors and bias noise.

2) Comparison Between Sidescan Sonar and Forward-Look
Sonar CML: The efficiency of CML using sidescan sonar has
been compared with CML using forward-look sonar and dead-
reckoning estimation performed by a Kalman filter for different
landmark densities. Both sonars are tested on the same set of
data for each simulation. Ten simulations are run per landmark
density setting. The mission scenario covers a m
area. The sonars follow a trajectory of 20 parallel and equally
spaced linear tracks that cover all the mission space; they then
return to the starting point.

The data association is assumed to be perfect for both sonars;
whereas this assumption is reasonable for sidescan sonar, it is
optimistic for the forward-look sonar. Using a forward-look
sonar, multiple instances of the same landmarks are likely to be
stored in the map [18], thus reducing the efficiency of the filter.
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Fig. 7. Last-track trajectory error. The error when the vehicle reaches the
last track trajectory, and just before it returns to the starting point, is again
smaller for the CML solutions. The forward-look sonar marginally offers the
best performance.

Fig. 8. End-of-mission error. The error when the vehicle has finished the
mission and returns to the start point is comparable for both the sidescan and
forward-look sonar.

The sidescan will generally observe a third of the landmarks
twice; the rest of the landmarks will be observed three times.

On average, the forward-look sonar performs 23 times more
observations per landmark than the sidescan sonar does. Given
this number, results presented in Figs. 5 and 6 are not surprising.
These figures are the mean and maximum position errors for all
the missions and landmark distributions ranging from 5 to 23.
According to the values depicted in these figures, CML using
a forward-look sonar is, on average, approximately two times
better than CML using a sidescan sonar at estimating the ve-
hicle’s position.

Fig. 7 illustrates the error when the vehicle reaches the last
track in the set; at this point, the vehicle is ready to return to the
starting point and finish the mission. This figure shows that both
sonars are successful in creating and updating a stochastic map.
However, between two observations the error of the sidescan

Fig. 9. Mean-heading error. The choice of sonar for CML has an impact on the
heading estimation. The sidescan degrades its estimation and the forward-look
sonar improves it, especially with a high landmark density.

Fig. 10. Maximum-heading error. The maximum-heading error at any one
point in the trajectory for all the simulations, although considerable, remains
similar for all three processes.

sonar stochastic map grows. The forward-look sonar, on the
other hand, continues to track landmarks due to its higher rate
of observations. The error growth for the forward-look sonar is,
thus, limited in comparison.

When the vehicle finally reaches its last waypoint, the land-
marks mapped at the beginning of the mission are reobserved.
The vehicle error at this point is bounded by the observation of
these landmarks. The localization solutions at this stage of both
the forward-look sonar and the sidescan sonar are comparable
(see Fig. 8).

The accuracy of CML using sidescan sonar is more depen-
dent on the landmarks’ distribution. For the four criteria used
above, their standard deviation is between one-and-a-half and
two times higher with sidescan sonar than with forward-look
sonar.

Figs. 9 and 10 show the mean and maximum errors in the
heading estimates. The lack of accuracy of the three processes
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is due to the centrilinear dynamic model, which assumes a con-
stant heading; this leads to high errors in the turns. Observations
of landmarks around a turn with the forward-look sonar provide
extra information. For the sidescan, without a pitch sensor, the
along-track distance between the landmark and the vehicle is
pure noise. With such a sensor, accuracy on both position and
yaw will be improved.

III. SMOOTHING THE STOCHASTIC MAP

The previous section demonstrated the effectiveness of CML
using sidescan sonar to provide the vehicle with a position esti-
mate in order to carry out its task. Observations, by correcting
the drift, create jerks in the estimation. Thus, this trajectory esti-
mation is unsuitable for some data-exploitation techniques, such
as mosaicing. CML using sidescan sonar is less useful without
an appropriate smoothing postprocess.

The Rauch–Tung–Striebel (RTS) backward filter is usually
used to smooth the output of a Kalman filter [39]. The next sec-
tion describes how the RTS works and Section III-B will intro-
duce a solution capable of smoothing the stochastic map output
with the RTS filter.

A. RTS Filter

Estimating is a real-time data-processing scheme that only
uses the measurements between 0 and to estimate the state of
a system at a certain time , where , while smoothing
is a nonreal-time data-processing scheme that uses all measure-
ments between 0 and to do it. In the discrete time case, let
us define as , where for sampling
period and . In the discrete case, the scheme uses
all measurements taken at discrete time periods from to

An optimal smoother can be thought of as a suitable combi-
nation of two optimal filters. One of the filters, called a “forward
filter,” operates on all the data before time and produces the
estimate . The other filter, called a “backward filter,” oper-
ates on all the data after time and produces the estimate .
Together, these two filters use all the available information. The
optimal smoother is sought in the form

(15)

Optimization of (15) leads to the optimal smoother

(16)

where , , and are, respectively, the error covariance of
the smoothed estimate, that of the forward estimate, and that
of the backward estimate. A state is said to be smoothable if
an optimal smoother provides a state estimate superior to the
one obtained when the final estimation of the optimal filter is
extrapolated backward in time.

At time , the estimate of the forward filter uses all the avail-
able information, so . This leads to the boundary condi-
tion for . This is a major issue for initializing
the backward filter, which is circumvented by developing the

Fig. 11. Results using smoother. Running the RTS on the vehicle state
produces a smoothed estimate. Zooming on the trajectory estimation shows
how the RTS trajectory experiences no jerks when the state is corrected
after reobserving a landmark. The forward estimate, on the other hand, does
experience a jerk.

backward filter propagation equation and the smoother equa-
tion to find an equivalent form: the RTS form. This form does
not involve the backward filter per se; the forward Kalman filter
is run first. Then, its last estimate and covariance are used to ini-
tialize the smoothed estimate, which is obtained by running the
backward RTS equations. For linear systems

(17)

where and denote the prediction and cor-
rection states of the forward filter at instant and and

are their respective covariances. At time instant ,
the smoothed estimate is and is its error co-
variance. The transition matrix for the system is . As is the
case for the EKF, a first-order approximation of the nonlinear-
ities can be made to account for these. The equation remains
unchanged, but for the transition matrix , which is now sub-
stituted by , the Jacobian of the process (vehicle) model
with respect to the state evaluated at .

B. Smoothing the Stochastic Map Output

The stochastic map is not of a fixed size. As new observations
are made, the state and associated covariance increase in size to
accommodate them. The RTS was not designed to operate under
these circumstances; it must operate on matrices and vectors
of constant sizes. The strategy is to increase the size of all the
stored states and vectors to match the final size of the stochastic
map. The values of the landmark states and covariances before
the first observation of these is performed must also be decided.
Fixing the values to zeros will cause a numerical instability. The
obvious choice is to make them equivalent to the output of the
filter after the first observation of that landmark. That is to say,
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Fig. 12. The rms position error. The improved RTS filter accuracy can be
confirmed by observing the rms error with respect to the true (simulated)
trajectory. The true error of both the stochastic map and the RTS filter solutions
closely follow their respective 1 � � covariance estimates. The rms and
covariance errors for the stochastic map solutions grow until the landmarks are
reobserved; at this stage, the errors drop. The new error values are a function of
the landmarks’ positions errors, the errors of the observations, and the vehicle’s
position errors when the observations take place. The rms and covariance errors
for the RTS filter solution are smaller, as the filter now uses the forward and
backward estimates. The errors also drop when the landmarks are reobserved.
This is more apparent as the first three and last landmarks are reobserved.

the position of that landmark before it was observed must have
been the same as it was after it was observed and this is as certain
before as it was after. The correlations terms to other landmarks
and to the vehicle before the landmark was observed are set to
zero, because only after it has been observed can the landmark
be correlated to the rest of the workspace.

The RTS filter is implemented on the forward-state estima-
tion obtained by the CML. Figs. 11 and 12 show the results
from the simulation. The RTS estimate is smooth: no jerks can
be observed. The covariance matrix is also smooth and signifi-
cantly smaller than the forward covariance matrix and the posi-
tion error is reduced. For ten simulations, the mean rms errors
with RTS were 0.76 times the mean rms errors without RTS. The
mean heading rms errors with RTS were 0.73 times the mean
heading rms errors without rms. The accuracy improvement is
not as spectacular as is suggested by the covariance matrix, al-
though no simulation has shown an increase of the estimation
error and the result is always smooth.

The next section shows results obtained with real data, which
show how the smoothed CML output can be used to create very
high-quality mosaics.

IV. RESULTS WITH REAL DATA

The following results were obtained by processing data gath-
ered during the BP’02 experiments carried out by the Supreme
Allied Commander Atlantic (SACLANT) Undersea Research
Centre, La Spezia, Italy. The sidescan data was gathered by a
REMUS AUV [4]; its position output consists of a synchronous
stream of data updated every second. The data stream outputs
the AUV’s speed and heading, as well as a processed navigation
solution. The AUV uses acoustic transponders to compute this

TABLE I
KALMAN FILTER AND STOCHASTIC MAP ERRORS

Fig. 13. Original REMUS trajectory. The output trajectory for the REMUS
mission starts at the origin. The position of the observations and reobservations
of the 43 landmarks has been superimposed to the original trajectory. This
diagram shows the spatial distribution of these landmarks. Note how there are
only six observations and corresponding reobservations at the beginning of
the mission on the first two tracks. There are no observations from the third
track until the seventh and eighth tracks, when one landmark is observed and
reobserved. The observations do not become commonplace until the ninth
track. There are no observations after the vehicle reaches the last waypoint, at
approximate coordinates 0 (m) east and 1195 (m) north, as it returns toward the
mission start point.

solution. The output from the fixes is not given in the REMUS
data stream; therefore, the authors had to derive these position
updates from the data, which was necessary as the output would
be used as the input to a Kalman filter and also to the CML
system. To derive these updates, the authors developed an al-
gorithm that, given a considerable change in position (a change
outside of the predicted position), would extract the new po-
sition of the vehicle and assume it to be an update from the
acoustic transponders. The changes had to be considerable in
order to distinguish between vehicle maneuvers and acoustic
transponder updates. The method ensures that only outputs from
the transponders are extracted. Unfortunately, this means that in
cases where the dead reckoning and acoustic transponders pro-
duce a similar result, the transponder output will be ignored.
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Fig. 14. All trajectories. The original trajectory, the Kalman–RTS trajectory,
and the CML–RTS trajectory can all be compared. The Kalman–RTS and
CML–RTS trajectories both correct the navigation before and after the LBL
fixes. Only the CML–RTS trajectory corrects the trajectories when landmarks
are observed. In this section of the mission, the CML–RTS trajectory is
corrected by the observation of landmark 7.

The REMUS data was used to run both a Kalman–RTS and a
CML–RTS system. Table I lists the errors chosen for each of the
Kalman and stochastic map parameters. These values are larger
than the values quoted by sensor manufacturers; the intention
is to produce a consistent solution despite possible errors that
might be introduced when manipulating the data to extract the
possible LBL position updates.

Unlike the simulations in this real mission, the AUV is also
aided by LBL fixes. The Kalman–RTS and CML–RTS also use
these fixes in these experiments. The results obtained and de-
tailed below suggest that the Kalman–RTS provides better accu-
racy than the original trajectory. The CML–RTS provides better
accuracy and better visual mosaics than both the Kalman–RTS
and the original trajectory. Thus, the CML strategy is able to
also work alongside absolute sensors.

The sonar data from the REMUS was used to manually ex-
tract landmarks. Some error might have been introduced in the
process of manually extracting the landmarks to produce the ob-
servation vectors (11). These landmarks were also associated
to each other manually and the associations were perfect; there
were no mismatches. The sonar images are time stamped and
can be referred to for navigation.

The mission examined in this paper lasted 2 h, 57 min, and
8 s. The REMUS navigation output for the mission (Fig. 13)
was processed and used to create Kalman–RTS and CML–RTS
solutions. A section of the workspace showing part of the
solutions and the original navigation output from the REMUS
can be seen in Fig. 14. The results show that the RTS solu-
tions are smoother and also are able to correct the navigation
before and after the LBL fixes. The results also show that the
Kalman–RTS and CML–RTS trajectories are different; this

Fig. 15. Ratio of estimated rms radial errors. The estimated CML–RTS
filter is more accurate than the Kalman–RTS filter; these errors are obtained
using the stored covariances. The ratio is smaller at the start of the mission
as landmark observations help to bring the CML-RTS error down. The lack
of landmarks through the third to sixth tracks in the trajectory results in the
estimated error ratio being close to one. On the rest of the tracks, the higher
density of landmarks results in the better performance of the CML–RTS
solution, close to three times better when the landmarks are reobserved and
two times better between reobservations. At the end of the mission, there are
no further reobservations and, again, the performance of the CML–RTS filter
tends to that of the Kalman–RTS filter.

difference results from the inclusion of the landmarks’ obser-
vations in the CML–RTS solution. Consequently, the estimated
radial RMS error, obtained from the stored covariance infor-
mation, for the CML–RTS trajectory is of smaller magnitude
than the Kalman–RTS trajectory. The ratio of the estimated
CML–RTS radial error over the estimated Kalman–RTS radial
error is, on average, 0.635. Fig. 15 shows the evolution of this
ratio for the whole mission. Close inspection of this figure
reveals that the CML–RTS solution is estimated to be more
accurate throughout. The CML–RTS solution is approximately
three times more accurate where landmarks are observed and
reobserved.

The mismatch errors between the observed landmarks’ posi-
tions were extracted for the original trajectory, the Kalman–RTS
trajectory, and the CML–RTS trajectory. The positions were ob-
tained by georeferencing the landmarks’ observations using the
appropriate trajectory and observation parameters. The errors
were obtained by finding the rms distance between matching
landmarks’ observations. Table II shows the maximum, min-
imum, and average rms errors obtained for each trajectory
type. These errors show that the CML–RTS should be able to
render higher quality georeferenced mosaics. The maximum
error of 168.2 m for the original trajectory is a result of a
landmark being observed before any LBL fixes take place,
which suggests that the initial error in the vehicle position is
close to that figure. The average rms error of 6.7 m, displayed
by the Kalman–RTS trajectory, also suggest that the assump-
tion that the LBL fixes have an accuracy of 60 m is likely to
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TABLE II
LANDMARKS POSITIONS’ MISMATCH RMS ERRORS

Fig. 16. Example 1: AUV output. This output is not smooth: Observe the jerks of the high-intensity surface returns (the thin white line following the vehicle
track). The boundary formed by the sand-ripple region does not run smoothly across the image.

be very conservative. The difference in the average rms error
between the Kalman–RTS and CML–RTS trajectories shows
the real value of the CML–RTS solution.

The mosaics were produced by using the REMUS AUV
navigation output, the Kalman–RTS output, and the CML–RTS
output. From these, it is clear that the sidescan sonar mosaics,
computed with the CML–RTS solution, offer the highest visual
quality.

In the first example (Figs. 16–18), the images zoom into a
large-scale mosaic of two overlapping REMUS tracks along the
set of regularly spaced and parallel linear tracks. It is clear that
the use of the Kalman–RTS output has helped to smooth the
data. However, the errors between the landmarks are still persis-
tent. On the other hand, the CML–RTS solution helps, not only
in producing a smooth navigation output, but also in producing
a visually coherent result. The landmarks and the features in the
surrounding environment now fit together better.

The second example, shown in Figs. 19–21, is quite inter-
esting. In this example, again of two overlapping tracks, the

shadows created by the object can be seen to oppose each other
as the object is seen from two different sides. This can be seen
in Figs. 19 and 20, where the error in the landmark position
illustrates the phenomenon. The resulting mosaic using the
CML–RTS solution produces a view of the object with two
distinct shadows. Shadows from objects are commonly used in
object-detection algorithms; thus, the observed phenomenon
might prove to be a useful tool in the future.

The third and final example shows the benefits of the
Kalman–RTS solution over the AUV output. The AUV’s
dead reckoning is sometimes inaccurate. In these instances,
an acoustic update will appear as a jerk in the trajectory. The
error in the landmark position in these cases can be, in the
worst cases, hundreds of meters. This is apparent in Fig. 22,
where another two overlapping tracks are shown. The smoother
improves the accuracy of the solution by using the knowledge
gathered after the update and it produces a feasible output,
as can be seen in Fig. 23. In any case, best results are again
obtained when using the CML–RTS solution (Fig. 24).
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Fig. 17. Example 1: Not using CML. In this case, the navigation errors are not completely fixed. The smooth output can be seen by observing the surface returns
(the thin white line following the vehicle track). The boundary formed by the sand ripples does not run smoothly across the image.

Fig. 18. Example 1: Using CML. The CML–RTS solution produces an accurate and smooth output: observe how the sand ripples form a single smooth boundary.



452 IEEE JOURNAL OF OCEANIC ENGINEERING, VOL. 29, NO. 2, APRIL 2004

Fig. 19. Example 2: AUV output. In this example, the error is apparent by observing that the same landmark appear in two different locations. In the image, the
gray stripes are caused by the geometry of the sidescan beams and their sidelobes. The thin white line following the vehicle track is caused by the surface returns.

Fig. 20. Example 2: Not using CML. The landmark-positioning error persists when the trajectory is simply smoothed using a Kalman–RTS algorithm.
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Fig. 21. Example 2: Using CML. The CML–RTS solution corrects the relative navigation and the resulting mosaic displays a single landmark.

Fig. 22. Example 3: AUV output. The AUV error before it receives a fix from the acoustic transponders is considerable. In this case, it is more than 100 m.
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Fig. 23. Example 3: Not using CML. The Kalman–RTS strategy can be used to propagate the acoustic fix to points that occur in the trajectory before the fix.

Fig. 24. Example 3: Using CML. The CML–RTS solution propagates the acoustic fix to points that occur in the trajectory before the fix and also corrects the
trajectory to align the observed landmark.
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V. CONCLUSION

For an AUV conducting a sidescan survey of the sea floor
in overlapping parallel tracks, this paper has shown how
uncertainty in estimates of its trajectory can be reduced with
a CML–RTS algorithm implemented on sidescan images
containing operator–identified perfectly matched targets.

Simulation results showed that CML using a sidescan
sonar produces comparable solutions to a forward-look sonar
system if landmarks stored at the beginning of a mission are
reobserved. Simulations also showed that the mean rms error
with CML–RTS using sidescan were 0.76 times the mean rms
error of a forward CML without RTS smoothing.

Results with real data showed that the estimated error of the
CML–RTS solution is, on average, 0.635 times the estimated
error for the Kalman–RTS solution. Missmatch errors of multiple
georeferenced landmark observations showed that, on average,
the Kalman–RTS solution has an error of 6.7 m; the average
error of the CML–RTS solution is 0.8 m.

In the future, the authors plan to include existing object-
detection techniques [26], [40] and automatic data-association
strategies [18] to simplify and minimize the operator’s task
of manually interpreting and matching the data.
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