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Abstract—This paper describes a new framework for segmen-
tation of sonar images, tracking of underwater objects and motion
estimation. This framework is applied to the design of an obstacle
avoidance and path planning system for underwater vehicles based
on a multi-beam forward looking sonar sensor. The real-time data
flow (acoustic images) at the input of the system is first segmented
and relevant features are extracted. We also take advantage of the
real-time data stream to track the obstacles in following frames to
obtain their dynamic characteristics. This allows us to optimize the
preprocessing phases in segmenting only the relevant part of the
images. Once the static (size and shape) as well as dynamic char-
acteristics (velocity, acceleration, …) of the obstacles have been
computed, we create a representation of the vehicle’s workspace
based on these features. This representation usesconstructive solid
geometry(CSG) to create a convex set of obstacles defining the
workspace. The tracking takes also into account obstacles which
are no longer in the field of view of the sonar in the path plan-
ning phase. A well-proven nonlinear search (sequential quadratic
programming) is then employed, where obstacles are expressed as
constraints in the search space. This approach is less affected by
local minima than classical methods using potential fields. The pro-
posed system is not only capable of obstacle avoidance but also of
path planning in complex environments which include fast moving
obstacles. Results obtained on real sonar data are shown and dis-
cussed. Possible applications to sonar servoing and real-time mo-
tion estimation are also discussed.

Index Terms—Obstacle avoidance, path planning, segmentation,
sonar, tracking, underwater robotics.

I. INTRODUCTION

WE ADDRESS the general path planning and obstacle
avoidance problem for an underwater vehicle using high

resolution, real-time sonar sensory data. Although related prob-
lems such as two-dimensional (2-D) map building, environment
modeling [1], [2] and motion estimation could be tackled in the
framework of the presented system, we will mainly focus on ob-
stacle avoidance and path planning.

Until recently, most obstacle avoidance systems used low
resolution or low frame rate sonar sensors yielding inaccurate
estimations of the obstacles positions and movement. These
systems were suitable for reactive obstacle avoidance (“reflex
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behavior”) but not for real path planning in a complex and
changing environment [3]1 , [4]2 .

With the recent development of reliable, high resolution,
multi-beam sonars, a new range of methods have emerged, which
allow for a more detailed description of the environment and
have broadened the spectrum of techniques that can be used
[5]–[9]. It is now possible to get a real-time update of the sensed
environment leadingtoabetterunderstandingof thesceneandthe
capability tohandlecomplexandchangingenvironments [10].

A. Target Application

The target of this research is to develop an obstacle avoidance
system for the Advanced ROV Package for Automatic Mobile
Investigation of Sediments (ARAMIS) tool-skid, where ROV
stands for Remotely Operated Vehicle. The ARAMIS project
(MAST-CT97-0083) provides a geological/scientific tool-skid
which will be mounted on two different ROVs, VICTOR from
IFREMER (France) and ROMEO from CNR-IAN (Italy),
operating at a close distance from the seabed (2 meters) at depths
ranging from 50 to 2000 m. The main missions of the ROVs
are geological and biological surveys of the seabed and water
column, including benthic and pelagic missions which could last
up to 72 h. The need for an automated piloting system, or at least
an aided piloting system, is clear. The cruising speed for both
ROVs is around 1 kn and the movements of the ROVs are mea-
sured by several on-board sensors feeding the obstacle avoidance
system with position, speed and orientation of the vehicle in
world coordinates. The positioning system will consist in a long
baseline system (LBL), an super short baseline system (SSBL)
and of various inertial navigation sensors (INS), depending on
the vehicle such as compasses, gyro-meters and Doppler velocity
log (DVL). Although at a depth of up to 2000 m, the baselines
systems are likely to be imprecise, and INS sensors will drift with
time, the obstacle avoidance module does not require long-term
accuracy as it is creating alocal map of the environment. The
drift of the INS sensors should be negligible on short periods
and ensure the successful creation of a precise local map.

1See Y. Petillot. A local navigation technique with obstacle avoidance, called
adaptive navigation, is proposed for mobile robots in which the dynamics of
the robot are taken into consideration. The only information needed about the
local environment is the distance between the robot and the obstacles in three
specified directions, The navigation law is a first-order differential equation and
navigation to the goal and obstacle avoidance are achieved by switching the
direction angle of the robot, The effectiveness of the technique is demonstrated
by means of simulation examples.

2See Y. Petillot.
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Fig. 1. FAU sonar characteristics and mounting configuration.

B. Sonar Data Collection

The sonar used for collecting the data used throughout this
paper is the in-house built multibeam sonar of Florida Atlantic
University (FAU) [11]3 . This sonar was mounted on the Ocean
Explorer AUV looking forward and slightly downward as de-
picted in Fig. 1.

It has the following characteristics:
• number of beams: 120;
• vertical beam-width: 30;
• horizontal beam-width: 1;
• sector: 120;
• operating frequency: 600 kHz ;
• operating range: 40 m.

C. System Overview

When one wants to address the problem of obstacle avoid-
ance and path planning in a partially sensed environment, the
main problem encountered is the extraction of information from
the input data to create a representation of the environment that
is as close as possible to the “ground truth” scene and can be
interpreted in terms that are suitable for computation.

In our case, the first aim is to detect and avoid obstacles.
Therefore, the segmentation of the scene is the first and crucial
task. It is also useful to know how these obstacles are moving
with respect to the vehicle in order to take movement into ac-
count in the obstacle avoidance/path planning process. We have
introduced a tracking module to perform this operation. Once
the obstacles’ static and dynamic characteristics have been com-
puted from the input data flow, we create a workspace of obsta-
cles surrounding the vehicle. This workspace uses constructive
solid geometry (CSG) to create a convex representation of the
obstacles, which eases convergence of the path planning algo-

3See Y. Petillot.

rithm. The map of obstacles surrounding the vehicle takes into
account the obstacles currently in the field of view of the vehicle
but also obstacles that have gone out of the field of view, which
have been tracked in the near past, and whose position is still
critical to the definition of a safe path for the vehicle.

The system we have designed (see Fig. 2) is modular in
nature. Modularity is seen as a way to handle different needs
within the same framework.

1) Segmentation:The purpose of this module is to identify
the interesting regions of the image containing obstacles. Con-
sidering the very nature of multi-beam sonar images, we have
decided to discard the certainty grid approach [12] often used
in air ultrasonic sensor based motion planning and to focus on
an object oriented description of the workspace. As the vehicle
is moving close to the seabed, high backscatter seabed returns
are expected. This backscatter must be estimated and removed
when possible in the segmentation process.

2) Feature Extraction:Once the image has been segmented,
potential obstacles and their features (position, moments, area)
are computed. These features will be used later to discard false
alarms and track the obstacles and the vehicle.

3) Tracking: This module provides a dynamic model of the
obstacles. Moreover, considering the amount of data to be pro-
cessed, the tracking drives the segmentation and reduces the
computational cost.

4) Workspace Representation:From obstacles and features
extracted from the current image, we can build a symbolic rep-
resentation of the vehicle’s surrounding. Combining this repre-
sentation with previous instances of the vehicle’s environment, a
dynamic workspace is built and constantly updated. It forms the
basis for the path planning algorithm. In this workspace, each
object is represented by its current position, shape and estimated
velocity. The objects shape is assumed to be elliptic and real ob-
jects are represented as ellipses. This workspace can be seen as
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Fig. 2. Architecture of sonar-based, real-time path planning.

a local map of symbolic objects with their associated estimated
static (shape, position) and dynamic (velocity) properties.

5) Path Planning: A nonlinear programming technique
based on a CSG representation of the obstacles is used for path
planning. Each obstacle in the workspace is represented as a
constraint that has to be met in the search space (that is, the path
must not cross the obstacle) while minimizing the Euclidean
distance to the goal. This approach takes forward some of our
previous work [7], [8].

6) Plan of the Paper:The plan of the paper is as follows.
Section II details the segmentation technique we have devel-
oped. Section III reviews the feature extraction and tracking
modules. Section IV explains the workspace model building
procedure and the path planning algorithm. Results are shown
for each module and the general path planner is demonstrated
in Section V using real sonar data. Section VI draws a sum-
marizing picture of our achievements so far while Section VII
investigates possible applications of the system to motion esti-
mation and sonar servoing.

II. SEGMENTATION

A. Introduction

Much work has been done on the segmentation of side-scan
sonar images, but not so much on forward-looking sonar im-
ages. In general, segmentation is performed on still images, or
separates the moving and static parts of the images using fast
Fourier transform (FFT) techniques [6], [13].

Multi-beam sonar images are generally noisy and need to be
filtered. The noise is mainly due to backscatter from either the
sea surface or the sea bottom. Two kinds of segmentation proce-
dures can be envisaged: 1) still image segmentation, where each
image is segmented independently and 2) image flow segmen-
tation, where the images are segmented taking into account the

results of the segmentation of the previous frames. Sonar im-
ages are very difficult to segment using a single return from the
sonar. As we have a flow of acoustic images at the input of the
system at a sufficient frame rate, it is of more interest to design a
segmentation procedure that takes into account several frames.
Moreover, good segmentation requires very time consuming op-
erations. For this reason, we focus on segmentation of areas of
interest on the image, namely the: 1) first layer segmentation:
segmentation of areas where a very basic and fast segmenta-
tion algorithm indicates that there is a new object and 2) second
layer segmentation: segmentation of areas where an object has
already been detected in the past, or, if the object is moving with
respect to the vehicle, areas where the object is expected to be
at the time of the image acquisition. To do this, objects must be
tracked throughout a sequence of consecutive frames in order to
estimate their current location.

B. First Layer Segmentation

A common segmentation procedure for sonar images consists
of median filtering followed by thresholding [6]. Filtering for
noise smoothing is an absolute necessity in the case of sonar
images as backscatter is common, especially in the case of multi-
beam sonar images. The filtering part is also generally very time
consuming. We have tried several filtering techniques (mean,
median, Gaussian) and found that a good compromise between
quality and speed was reached using the following scheme.

• Filtering: The filter used to remove the backscatter noise
is a 7 7 Gaussian filter which yields results almost as
good as the median filter even on noisy images but at a
reduced computational cost [14].

• Threshold: A single, fixed threshold, generally gives re-
sults which are highly dependent on the background level.
We have used an adaptive thresholding technique based



PETILLOT et al.: UNDERWATER VEHICLE OBSTACLE AVOIDANCE AND PATH PLANNING USING A MULTI-BEAM FORWARD LOOKING SONAR 243

on the image histogram which is independent of the actual
signal level. The idea is to estimate the noise probability
density function assuming that the histogram of the image
is a good estimate of it (thus assuming that new objects
to be detected are small in the image). It must be noted
that the calculation of the histogram is done on the orig-
inal image and not the filtered image.

The predicted locations of previously identified objects are re-
moved from histogram calculation. A false alarm rate (FAR) is
then fixed and used in conjunction with the histogram to derive
the threshold value. If an object is part of the image on which the
histogram has been derived, it contributes, most probably, to the
higher part of the histogram and will be selected even with a high
falsealarmrate,whilemostof thenoisewillberejected.Thenoise
that should be tolerated corresponds to backscatter returns which
areat thesamelevelas theobjectspresent in the image.Removing
this kind of noise would also remove the objects or part of them.

Special cases where the images are mainly composed of ob-
stacles (with high returns) or with a lot of backscatter noise
from the seabed can easily be detected as they show a high vari-
ance. The process can then be adapted to these special cases.
This technique runs in real time (Sparc Ultra-10 with code in
Matlab 5.2) and represents a compromise between real adaptive
filtering, where the threshold value is derivedlocally with re-
spect to the surrounding pixels and fixed thresholding.

This scheme is used on a subsampled image to quickly detect
potential obstacles in the scene while the second layer segmenta-
tionusesmoreelaborate techniquesonselectedpartsof thescene.

C. Second Layer Segmentation

The second layer takes advantage of the tracking module (see
Section III) which tracks objects from frame to frame and pre-
dicts their dynamic characteristics (including their next loca-
tion) with respect to the vehicle.

The process can be decomposed in two distinct parts: 1) se-
lection of the areas of interest in the image and 2) segmentation
of these regions.

1) Selection of the Areas of Interest:The tracking is based
on Kalman filters. A filter is associated to each object detected
in the scene. Let’s call the set of objects currently present
in the scene. This set can be decomposed in two subsets

and which, respectively, represent
the objects which just appeared on the scene and the objects
tracked from previous frames. For each object in , an
area of interest is set which matches exactly the labeled object
resulting from the first layer segmentation. For each object
in , an area of interest is set which matches the
previously tracked object and is positioned using the Kalman
filter prediction. The size of the area of interest is increased by
the uncertainty measures on the position and area of the tracked
object given by the Kalman filter associated with the object.
Once the areas of interest have been set, they can be segmented.

2) Segmentation:Thesegmentationalgorithm isagainbased
on the histogram of the original image, previously computed, to
set the thresholds. The image is filtered in the areas of interest
usinga7 7Gaussian filterandadouble threshold isapplied.The
first (higher) threshold selects the parts of the image that is to be
taken into account while the second threshold (lower) selects the

Fig. 3. Example of application of the double threshold algorithm to a simple
1D curve. The regions selected by the algorithm are in grey.

areas above it which are connected to the regions selected by the
higher threshold by a continuous chain of pixels above the lower
threshold. Eight or four-connectivity can be used to define the
neighborhood of a pixel. We have used eight-connectivity. Fig. 3
gives a simple example of this procedure.

The first interest of this algorithm is to discard middle value
peaks, not connected to high returns and generally due to noise,
which would be kept by a simple thresholding technique. This
algorithm also keeps relatively low intensity pixels connected
to high returns which correspond to less reflective parts of an
object. An example of segmentation is shown in Fig. 4. The
results shown take into account objects which have been tracked
for a few frames.

The second layer segmentation algorithm runs in 0.1 s on
an Ultra-5 Workstation including the Gaussian filtering, while
the first layer algorithms runs in 0.3 second under MATLAB
5.2. The gain in speed for the second layer (while performing a
more complex operation) is due to the smaller amount of data
processed using the areas of interest. A real-time version of the
code is under development.

III. FEATURE EXTRACTION AND TRACKING

A. Feature Extraction

Once segmented, the different regions representing the obsta-
cles in the image are labeled using a standard labeling algorithm,
and the features for each obstacle are extracted. These features
are:

• position in the image (the position is calculated as the cen-
troid of the object);

• area of the object in pixels;
• perimeter of the object in pixels.

B. Tracking

Tracking in forward-looking sonar images has often been
tackled using pixel-based techniques such as optical flow
associated to tracking trees or multiple hypothesis tracking [9],
[15]. These techniques, combined with a segmentation of the
scene perform well when the noise level is small but they often
require knowledge of the vehicle movement.

We have based our algorithm on a combination of segmenta-
tion and feature extraction. This technique does not require the
knowledge of the vehicle motion.

The extracted features are the basis of the tracking algorithm.
The tracker has two main functions: 1) to reduce the computa-
tional cost of the segmentation; 2) to extract the dynamic char-
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Fig. 4. Segmentation of multi-beam high-resolution sonar images using a Gaussian filter and a double threshold algorithm. Scans were obtained from FAU
multi-beam sonar (Courtesy of FAU). The range of the sonar was 40 m, the operating frequency 600 kHz. Thex andy labels on the image corresponds to the
pixels of the image.

acteristics of the objects for the path planning. We have chosen
to use Kalman filters as the core element of our tracking scheme.
As mentioned earlier, the noisy nature of sonar images strongly
limits the range of tracking techniques that can be used. For in-
stance, pixel based techniques such as correlation or optical flow
are very computationally expensive and can yield poor results in
very noisy environment. The Kalman filter is a good candidate
since:

• it is a fast algorithm when the state vector is small;
• it gives the uncertainty on the estimated parameters. This

is extremely useful for path planning purposes as the un-
certainty measure can be included in the obstacle avoid-
ance module to increase the safety of the system;

• a model of the vehicle dynamics can be easily included
using an extended Kalman filter;

• fusion from different sensors can be performed in a very
natural way.

1) Kalman Filter Design: When implementing a Kalman
filter, there is always a choice to make between the complexity
of the model and the number of states of the filter on the one
hand, and the computational cost associated with a given model
on the other hand. Moreover, the denser the data flow, the sim-
pler the model can be, and the sparser the data flow, the more
accurate the model must be. Multi-beam sonars provide a high
frame rate of sonar images (typically between 4–30 frames/s). A
simple model can therefore be used. In our tracking algorithm,
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a Kalman filter is associated to each object and we track the ob-
jects with respect to the vehicle. The Kalman filter used has the
following characteristics: the state vector,, is composed of the
position in and coordinates, the areaof the object and their
associated first and second derivatives

(1)

This model handles piecewise linear motions. If the frame rate
is high enough, one can expect to cope with almost any smooth
general motion interpolated as a succession of piecewise linear
motions.

Note that we could have designed a single Kalman filter in-
tegrating all the objects to take into account the correlation be-
tween them. However, the Kalman filter complexity is in
where is the number of states. This would have lead to very
computationally expensive tracking.

The state model is given by

(2)

while the measurement model is given by

(3)

where the random processes and represents respectively
the process and the measurement noises which are assumed in-
dependent (of each other), white, and with normal probability
distributions of respective covariance matricesand . Our
model is a simple linear model where the matrixcan be ex-
pressed as

(4)

while the observation is directly the position and area of the
object giving:

(5)

The initialization of and are standard and can be found in
[16]. The initialization of is also a critical factor as it drives
the data association. It is initialized at a high value to avoid data
association problems.

The Kalman recursion is then applied as usual to:

• cCompute the gain (blending factor) as

(6)

• update estimate

(7)

• update the covariance matrix

(8)

• get the prediction

(9)

• estimate the predicted covariance matrix

(10)

If we assume the position in and and the area to be in-
dependent, then the Kalman filter can be split into three smaller
filters, one for each variable, and , resulting in faster pro-
cessing. However, keeping variables together allows to take into
account the interdependency of the parameters via the covari-
ance matrix . We have used the larger filter version.

2) Data Association:In order to track objects in a sequence
of images, the first step to perform once the Kalman filters are
created and initialized is to associate new observations (objects)
in the current image with previously identified objects. This is
known as thedata association phase. Multi-target tracking is a
difficult problem and has been extensively studied in the past
[16]. A compromise must be found between performance and
computing time as our system has to run in real time. We have
therefore decided to use a nearest neighbor algorithm. The al-
gorithm uses position and area to perform the association and
has been modified to handle the merge of two objects and the
split of one object into two distinct objects. This scenario is very
likely to occur as the segmentation process is automatic and the
intensity of the returns highly variable in sonar images.

The data association algorithm has the following structure.

1) Calculate the distances between all the observations and
the predicted positions of the tracked objects.

2) For each tracked object, select the observations that:
• Either falls within the validation gate of the Kalman

filter for position in and . The validation gate is
defined as the uncertainty on a state of the Kalman
filter given by the covariance matrix of the filter.

• Or intersect with the tracked object.

3) For all the selected observations, verify if the areas are
compatible.

4) Prune the selected observations as follows.
• If a single observation falls within the validation

gate of the tracked object and its area is compatible,
keep it and discard the others.

• If two or more observations fall in the validation
gate of the tracked object and are compatible in area,
take the closest one in terms of position.

• If no observation falls in the validation gate matches
the area of the tracked object, there might be a split
or a merge. Try to aggregate observations to have
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a compatible resulting area. In case of failure, take
the closest observation.

• There is no observation in the validation gate of
the tracked object. An error in position estimation
might have occurred. Select the observations that
are intersecting with the tracked object. If they are
not a best choice for another tracked object, con-
sider them, and repeat the merge and split test as
previously described.

3) Tracking Update:Once the data association has been ap-
plied, we can update the tracking. Three cases are then possible:

• There is a new observation matching the predicted posi-
tion. The Kalman filter recursion is applied, a new state
vector derived and new internal values computed.

• No new observation matches the prediction. The obstacle
prediction isupdatedusing theKalman filter internal values
which are not updated. If no match is found between the
observations and a given tracked object on a predefined
number of frames, the tracked object is discarded as a false
alarm.

• An observation is not associated with any tracked object, a
new object is created and its corresponding Kalman filter
initialized.

C. Tracking Results

This scheme has been successfully used with real sonar data
provided by FAU. The sonar used was the FAU multi-beam
sonar [11]. The data was acquired using Ocean Explorer Au-
tonomous Underwater Vehicle (AUV) moving at around 1 knot.
The range of the sonar was set to 40 meters. The data was sam-
pled at 9 frames/s but processed at 3 frames/s. Hence real-time
was not achieved for the tracking. However, an optimized imple-
mentation of the algorithm would allow real-time processing at
9 frames/s. Fig. 5 shows the estimated trajectory of the tracked
objects with respect to the vehicle on a sequence of 300 frames
with a 9-frames/s frame rate. Images where subsampled by a
factor of 2, in both and , to speed up the procedure. The re-
sulting images had a resolution of 550400 pixels. The latest
estimate speed vector is also displayed on the figure. Fig. 5 con-
tains four examples of the tracking at different stages. The image
number (on the figure) indicates what image of the sequence is
considered.

The position and heading given by the inertial navigation
system are available, enabling benchmarking our results. The in-
ertial sensors cannot take currents into account leading to uncer-
tainties in the position while the heading remains accurate. We
have used the heading values as a benchmark for our tracking.

Assuming the objects are still, the tracking in fact detects the
motion of the vehicle with respect to the seabed. Estimating the
rotation of the objects between frames in the image yields an
estimation of the vehicle rotation in the world reference frame.
Therefore, we can compare the readings of the INS heading dif-
ference between two frames and the corresponding estimated
heading difference using the tracking.

The inertial sensors refresh rate is about 1 s while our esti-
mation is given at 9 frames/s. Therefore, differences between
the two measures can also be due to the latency in the refresh

of the inertial sensor value. In order to minimize this effect we
have linearly interpolated the INS readings when they were not
available for a given image.

Table I shows the estimated values of the heading difference
compared to the values given by the inertial sensors for different
frames. The trajectory of the best tracked object (visual assess-
ment) was used to compute the estimated headings. For instance,
for objects too close to the sonar head (less than 10 meters), near
field effects corrupts the results.

These results seems to indicate a good match between our
estimation, based on image processing alone and the inertial
sensor measures of the vehicle. The tracker could therefore be
used as a secondary navigation sensor which offers the fol-
lowing advantages over classical inertial sensors.

• It has a high frame rate.
• It can take into account currents as it tracks objects in the

seabed.

The application of these results to navigation are beyond the
scope of this paper although preliminary encouraging results
have been obtained. We are planning to investigate this issue
in more details in the near future.

IV. WORKSPACEREPRESENTATION ANDPATH PLANNING

The choice of a workspace representation is intimately linked
with the path planning technique used. Most path planning algo-
rithms assume a convex representation of the obstacles to ensure
that the goal will be reached. When dealing with a changing en-
vironment which is sensed on the fly, it is advisable to use a
reactive path planning technique which does not need a com-
plete description of the workspace between the current position
and the goal. The reasons for this are as follows.

• Only partial information is available (due to the limitations
of the sensor).

• New obstacles can appear in the workspace at any time.
• The precision in the representation of the obstacles will

change with their respective distance to the vehicle.

Global path planning techniques need a complete description of
the workspace as they define the complete path from the starting
point of the vehicle to the goal, generally using visibility graphs
(see [12] for a review on the subject) while local path plan-
ning only defines a partial path toward the goal given a pos-
sibly incomplete representation of the neighboring workspace
[17]–[19]. Global path planning is not advisable here as the en-
vironment is sensed while moving and therefore the workspace
is continuously changing and only partially known.

We have chosen to use a local path planning technique based
on some of our previous work [7], [8] where only the next step of
the path leading toward the goal is calculated. The central idea
of the method is to represent the free space of the workspace
as a set of inequality constraints of a nonlinear programming
problem. The goal point is designed as a unique global min-
imum of the objective function. The initial configuration of the
vehicle is treated as the starting point of the nonlinear search.
CSG is used to represent the free space of the robot as a set of
inequalities.
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Fig. 5. Example of tracking results on a 300 images sequence of multi-beam sonar images. The tracked trajectory is denoted as a yellow line while the center of
the object is denoted as a red cross and the estimated speed vector as a green arrow.
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TABLE I
COMPARISON OF THEHEADING ESTIMATES USING THE TRACKER AND THE

READINGS OF THEINERTIAL SENSORS ON THEVEHICLE. THE LEFT COLUMN

CORRESPONDS TO THEINTERPOLATEDREADINGS OF THEINERTIAL SENSORS

TO TAKE INTO ACCOUNT THELOWER REFRESHRATE

A. Workspace Representation Using CSG

In the following section, we operate in the configuration
space of the vehicle. It means that in this space, which integrates
both the kinematics and the link geometry of the vehicle, the
vehicle can be represented as a point.

The choice of CSG to represent obstacles is driven by the fact
that classical surfaces such as spheres, cylinders, and half-spaces
are CSG primitives that can be very easily combined.

Each obstacle in the workspace is given a mathematical repre-
sentation. Let be the 2-D or three–dimensional (3-D) surface
of an Euclidean space representing the obstacle, and let’s de-
note its interior points by , its boundary points by and its
exterior points by in a topological sense

(11)

The nonnegative functionon is called a defining function
(in the CSG sense) of the obstacleif

(12)

As an example, the defining function of an ellipse when
is

(13)

where and are the half-axes of the ellipse andis the point
of coordinates in the plan.

One of the major interests of CSG lies in the fact that complex
objects can easily be constructed from simple canonical objects
using the union and intersection operations

(14)
defines the intersection of objects whose respective defining
functions are while

(15)
defines the union of the same objects. These functions are diffi-
cult to obtain in practice and are replaced by the following ap-
proximation:

(16)

approximates the intersection of objects whose respective
defining functions are while

(17)

approximates the union of the same objects.is any positive
real number. can be used to control the accuracy of the smooth
approximation and can be used to obtain convex unions and in-
tersections.

Here, for the sake of simplicity and without loss of generality,
we have decided to represent the obstacles as ellipses. More gen-
eral representation are possible, including polygonal ones [8].
From the real obstacles contours, their convex hull is extracted
from the pixel-based representation of the objects and an optimal
elliptic fitting algorithm is applied to obtain the representation
of a given obstacle. Multi-beam sonars generally have between
64 to 240 receiving beams whose aperture is in the range [0.5,
2 ] horizontally and [15, 30 ] vertically. The FAU sonar has
120 beams with a 1horizontal beam-width and a 30vertical
beam-width. The 2-D resulting image is a projection of a 3-D in-
sonified region. The detected obstacles could therefore be above
or below the vehicle vertical position. This problem can be ad-
dressed by adapting the vertical beam-width to the typical oper-
ating distance of the vehicle to the seabed in order to take only
the objects in the water column into account. Bottom detection
can also be performed and used to determine if an object is lying
on the seabed or not. Finally, the shadow created by an object
can be detected and processed to extract its 3-D characteristics.
These techniques are widely used in side-scan sonar image pro-
cessing but very little has been done in this field concerning for-
ward-looking sonar images. This issue in itself is a wide subject
for future research and falls beyond the scope of this paper.

B. Path Planning Algorithm with Static Objects

In this case we assume all the objects are static objects in
the world reference frame. All obstacles ( ) of the
workspace are defined as ellipses whose defining functions
in a 2-D Euclidean space are defined in equation (13). The free
space of the vehicle with respect to obstacleis defined as

(18)

Therefore the complete free space of the vehicle can be repre-
sented as

(19)

Let us now define the objective functionrepresenting the prac-
tical problem to be solved, in our case, the minimum distance
from the start to the goal point in the configuration space as

(20)

where designs the goal point andis the transpose operation.
We now have completely defined our path planning problem

Optimize under the constraints , .

This is a classical problem in optimization. As in the general
case the defining functions are nonlinear, we use well-proven
numerical nonlinear programming techniques to solve the path
planning problem. This approach generates very smooth paths
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Fig. 6. Example ofgenerated path on a simulated workspace. The Starting point
is the bottom left corner while the goal point is the top right corner. The vehicle
speed is limited to 5 m/s. The simulated sonar’s field of view is defined by the
circle. The objects in the field of view and currently used for the path planning
process are denoted with crosses (+ sign) while the ones that will be used in the
next iteration of the path planning algorithm are denoted with squares.

compatible with feasible vehicle motion. The effect of each con-
straint can be clearly seen while it is often hidden in a single ob-
jective function in other optimization techniques such as poten-
tial fields where the careless definition of the potential functions
can easily lead to local minima. Finally, the CSG modeling of
the obstacles offers a lot of flexibility in the representation of
the workspace. An example of a generated path on a simulated
virtual workspace containing ellipses of random size and posi-
tion is given in Fig. 6. Some limitations of the vehicle such as
maximum speed or maximum rotation can also be taken into
account using additional nonlinear constraints. In this simula-
tion, the vehicle speed has been limited to 5 m/s. This is added
as a new constraint. Other vehicles’ dynamic limitations can be
added if they can be stated as nonlinear constraints.

C. Path Planning Algorithm with Moving Objects

Dealing with moving objects is a natural and desirable prop-
erty of any obstacle avoidance system. Most systems use a static
representation of the objects which if updated at a high frame
rate allows to take the movement of the obstacles into account.
However, this approach has several limitations. First, the objects
can never be found at their real position during the planning
process (between two updates of the workspace) and second, it

can lead to very suboptimal paths when the robot is pushed away
from its trajectory by a moving object. The best way to take into
account moving objects is to go from a 2-D workspace to a 3-D
workspace, the third dimension being time [20], [21].

The workspace representation of the objects presented in the
previous sections does not take into account their dynamic prop-
erties which were extracted by the tracker. It is straightforward
to include these properties in the description of the objects using
CSG. The parameterdescribing the position of the robot in the
configuration space will include time as a new variable and the
defining function will also depend on time.

As an example, the defining function of an ellipse (obstacle)
in will be

(21)

where and are the half-axes of the ellipse andis the point
of coordinates in .

The workspace should represent the objects in a world ref-
erence frame and only objects which are moving in this frame
(and not with respect to the vehicle) should be considered as
moving objects. If the motion of the vehicle is not known, one
can assume the mean motion of the objects (with respect to the
vehicle) as the estimated vehicle motion.

The path planning problem can then be reformulated. All the
equations derived for the static case are still valid. The only
difference is that now, not only is a function of the position
of the robot in the configuration space but also a function of the
time . This is equivalent to saying that the configuration space
has one more dimension.

However, time is a variable which has special properties. For
instance it must be strictly positive and it must always increase.
These constraints have to be added in the list of constraints in the
nonlinear optimization. The other implication of this reformu-
lation is that the goal is now defined in time as well. However,
it is impossible to knowa priori when the vehicle will reach the
goal as the path is unknown. The best way to tackle this problem
is to assume that the vehicle will reach the goal in a straight line
(no obstacles) at its maximum speed and to state the goal in time
according to this assumption. Then, at each iteration of the path
planning algorithm, the new time to goal is computed and a new
goal is set. Its physical position remains unchanged but the time
of arrival of the vehicle to the goal is changed according to the
path followed by the vehicle. This technique ensures a feasible
solution at each iteration.

This time varying representation of the workspace can easily
integrate the tracking information extracted from the objects to
yield a more reliable path planning algorithm. The results ob-
tained using this scheme on real-sonar data are shown in the
next section.

V. PATH PLANNING RESULTS

We have tested the combination of the segmentation, the fea-
ture extraction, the tracking and the path planning modules on
real sequences of sonar data. In order to test the algorithm,
we used sequences provided by FAU taken from the forward
looking sonar mounted on the front of the Ocean Explorer AUV.

As we cannot close the loop to control the vehicle movement,
we have simulated the movement of a “blind” ROV, driven ac-
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(a) (b)

Fig. 7. (a) Example of path planning on a sequence of real images with the elliptic representation of the objects. (b) Same example with the segmented images.
The blue cross represents the goal. The objects are represented as red ellipses and the trajectory is depicted as a dashed green line. Tracking legendsare the same
as the ones used previously.

cording to the data received from the sonar. This does not alter
the validity of the approach. The path planning is performed in
the vehicle reference frame and not in the real world reference
frame to simulate moving objects. This is equivalent to having a
still sonar looking at a moving environment while in the real mis-

sion we should expect a moving vehicle in a mostly still environ-
ment (mostly still features and maybe a few moving objects).

An animated MPEG version of the results displayed in
Fig. 7 can be found on our Web page at: http://www.cee.hw.
ac.uk/~aramis/resources/.
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The goal is set so that the generated path crosses the path of
the moving obstacles. On Fig. 7, the left image is the original
image while the right image is the segmented image showing
the identified obstacles. On the segmented images, the obstacles
contour are displayed. The planned path is also drawn on both
sequences of images.

In order to achieve faster processing time, the original im-
ages (1200 700 pixels) were subsampled by a factor of 2 in
both directions. Using Matlab 5.2 on a Sun Ultra-10, the whole
process (segmentation, workspace representation and path plan-
ning) takes 3 s/frame. Considering a frame rate of a few images
per second and using optimized code, a real-time system is cer-
tainly achievable using the framework presented here.

VI. CONCLUSION

We have presented here a general framework for performing
2-D obstacle avoidance and path planning for underwater vehi-
cles based on a multi-beam forward looking sonar sensor. This
scheme has been shown to be expendable to moving obstacles.

The ability of the system has been demonstrated on real sonar
data. The sequence used corresponds to a real trial, and the
ability of the system to perform obstacle avoidance is demon-
strated. Compared to other methods, our system generates very
smooth paths, can handle complex and changing workspaces
and presents no local minima as we use a convex representa-
tion for the obstacles.

This system can also be used for motion estimation using the
tracking module and some applications such as sonar servoing,
simultaneous localization and mapping can be handle within
this framework.

VII. FUTURE WORK

We are currently building a small ROV (http://www.cee.hw.
ac.uk/kelvin/rauver_index.html) which will integrate an ob-
stacle avoidance module in closed loop to test the validity of
our approach during see trials. We will investigate the possible
application of the tracking module to motion estimation and
vehicle localization. Applications to sonar servoing and auto-
matic docking will also be studied.
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