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Abstract— Efficient path planning algorithms are a crucial
issue for modern autonomous underwater vehicles. Classical path
planning algorithms in artificial intelligence are not designed to
deal with wide continuous environments prone to currents. We
present a novel Fast Marching based approach to address the
following issues. First, we develop an algorithm we call FM* to
efficiently extract a continuous path from a discrete representa-
tion of the environment. Secondly we take underwater currents
into account thanks to an anisotropic extension of the original
Fast Marching algorithm. Thirdly, the vehicle turning radius is
introduced as a constraint on the optimal path curvature for
both isotropic and anisotropic medias. Finally, a multiresolution
method is introduced to speed up the overall path planning
process.

Index Terms— path planning, Fast Marching, FM* algorithm,
autonomous underwater vehicle, turning radius, currents, mul-
tiresolution method.

I. INTRODUCTION

A. Underwater environment and autonomous underwater ve-
hicle

In mobile robotics, path planning research has focussed on
wheeled robots moving on 2D surfaces equipped with high
rate communication modules. The underwater environment is
much more demanding: it is difficult to communicate because
of low bandwidth channels undersea; it is prone to currents;
and the workspace may be worldwide. Moreover, torpedo-like
vehicles are strongly nonholonomic.

The current state of technology allows many laboratories to
move forward in the development of autonomous underwater
vehicles (AUV). The need of a reliable cognition process for
finding a feasible underwater trajectory solution is important.

B. Contributions

The main contribution of the authors is to present a Fast
Marching based method as an advanced tool for underwa-
ter path planning. With a similar complexity to classical
techniques in artificial intelligence, Fast Marching algorithm
(FM) converges to a smoothed continuous solution when
implemented on a sampled environment. This specificity is
crucial to understand the other contributions of our method:
• An heuristically guided version FM* of the Fast March-

ing algorithm is developed. FM* combines the efficiency
of the A* algorithm (described in the next section) with
the accuracy of the Fast Marching algorithm.

• FM* allows the curvature of the final path to be con-
strained, which enables us to take the turning radius of
any mobile robot into account. This property is formally
proven for both isotropic and anisotropic medias.

• We show that ordered upwind methods based path plan-
ners enable the addition of directional constraints. We

propose an anisotropic Fast Marching algorithm able to
deal with smooth fields of force like underwater currents,
but this concept can be generalized for any kind of
directional constraint.

• We propose a multiresolution scheme to speed up the
overall method in order to cope with real-time con-
straints of autonomous underwater path planning. This is
achieved by implementing the Fast Marching algorithm
on adaptive unstructured meshes.

C. Related work

A FM based path planner is proposed in [1] that allows
dynamic replanning. No heuristic is introduced in this method
to speed up the exploration process. The replanning ability
counterbalances this lack of efficiency in the case of a-
priori unknown terrain. The Field D* algorithm [2] is another
approach, which is close to the FM* algorithm in the sense that
it is an interpolated version of the D* algorithm (described in
[3]) to the continuous domain. In practice the FM* algorithm
is easier to implement and does not present the pathologic
cases of the Field D* algorithm when the path is extracted
using a gradient descent.

There are few literatures of path planning for autonomous
underwater vehicles. Carroll et al. [4] used the A* algorithm.
Warren [5] used a potential field method. This technique is
fast but it may be affected by local minima. Techniques such
as sequential quadratic programming [6], case-based reasoning
[7] and genetic algorithms [8], [9], have also been applied to
the motion planning of underwater robotic vehicles.

The issue of path planning under directional constraints has
been addressed by Alvarez et al. In [10] the authors used
genetic algorithms, which is an off-line technique even if
they optimize it using dynamic programming. In [11] the A*
algorithm is adapted to take current influence into account.
This method is close in spirit to our anisotropic Fast Marching
algorithm apart from the fact that it is based on a discrete
motion model for the AUV.

D. Overview of the paper

The plan of the paper is as follows. Section II reviews the
framework of our Fast Marching based planning technique.
We rigorously present it as a part of the broader class of
sampling based path planning methods. In this section it is
shown that the Fast Marching algorithm is an extension of
classical artificial intelligence algorithms to the continuous
domain. Section III briefly details the Fast Marching algorithm
and presents results using the FM* algorithm introduced in
this paper. Section IV presents an anisotropic version of the
Fast Marching algorithm to deal with directional constraints
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such as currents. In section V the turning radius of the
vehicle is introduced as a constraint to be respected along the
path. Finally, section VI presents a multiresolution method to
quickly extract sub-optimal trajectories.

II. PATH PLANNING FRAMEWORK

A. Environment representation

The uniform framework to study the path planning problem
amongst static obstacles is the configuration space (C-space).
The main idea of the C-space is to represent the robot as a
point, called a configuration.

A robot configuration is a vector of parameters specifying
position, orientation and all the characteristics of the robot
in the environment. The C-space is the set of all possible
configurations. We call C-free the regions of C-space which
are free of static obstacles. Obstacles in the workspace become
C-obstacles in the C-space. Usually a simple rigid body
transformation [12] is used to map the real environment into
the C-space.

B. Problem statement

Given a C-space Ω, the path planning problem is to find a
curve

C : [0, 1] → C-free,
s 7→ C(s) = (x(s), y(s))

An optimal path is a curve C that minimizes a set of internal
and external constraints (time, fuel consumption or danger for
instance). We assume in this paper that the complete set of
constraints is described in a cost function τ , which can be
isotropic or anisotropic.
• Isotropic case: the cost function τ depends only on the

configuration x:

τ : Ω → R+,
x 7→ τ(x), τ(x) > 0

• Anisotropic case: τ depends on the configuration x and
a vector ~F of a field of force F :

τ : Ω×F → R+,

(x, ~F ) 7→ τ(x, ~F ), τ(x, ~F ) > 0.

In sections II and III the C-space Ω is assumed to be
isotropic1. Directional constraints are introduced in section IV.

C. Sampling based path planning methods

The main idea in sampling based path planning methods is
to avoid a tedious construction of C-obstacles by sampling the
C-space (see [13] for an exhaustive study of sampling based
methods). The sampling scheme may be probabilistic (see
[14] for a survey on probabilistic path planning) or may be
deterministic (see [15] for a study of the relationship between
the deterministic and the probabilistic approaches). We focus
in this paper on the uniform Cartesian deterministic sampling
scheme although we propose a non-uniform deterministic
sampling scheme further in section VI. Cartesian sampling

1We focus on 2D C-spaces in this paper; nonetheless this framework holds
for C-spaces of any dimensions.

based methods are widely used in mobile robotics because
they are suitable for sensor images mapped into a grid of
pixels. The key issue is then to use an efficient grid search
algorithm to find an optimal path in the sense of a metric.

1) Metric space: A metric ρ defines the distance between
two configurations in the C-space, which becomes a metric
space (see [13] for a rigorous definition of a metric space).

In this paper the metric ρ we refer to is defined as:

ρ(x, x′) =
∫

[0,1]

τ(Cx,x′(s))ds (1)

where Cx,x′ is a path between two configurations x and x′,
and τ is a strictly positive cost function.

This metric can be seen as the ”cost-to-go” for a specific
robot to reach x′ from x. At a configuration x, τ(x) can be
interpreted as the cost of one step from x to its neighbors.
If a C-obstacle in some region S is impenetrable, then τ(S)
will be infinite. τ is supposed to be strictly positive for an
obvious physical reason: τ(x) = 0 would mean that free
transportation from some configuration x is possible.

2) Motion models: Metric ρ is defined for a C-space assum-
ing a continuous motion model. However, since the C-space
is partitioned into a Cartesian grid, grid search algorithms
commonly use a 4-connexity or a 8-connexity discrete motion
model for the robot, see figure 1.

a. b. c.

Fig. 1. Three examples of motion models. a) 4-connexity, b) 8-connexity
and c) continuous motion models. Cost-to-go level sets corresponding to these
three motion models are respectively squares, octagons and circles.

A discrete approximation ρd of metric ρ is defined:

ρd(x, x′) =
n∑

i=1

τ(xi) (2)

where x1 = x and xn = x′, and transitions between xi and
xi+1 are governed by a discrete motion model.

3) Grid search principle: A grid search algorithm is an
optimization technique that performs successively an explo-
ration and an exploitation process. The exploration process
builds a ”minimum cost-to-go” map, called distance function,
from the start to the goal configuration. The exploitation
process is a backtracking conversely from the goal to the start
configuration.

The distance function u : Ω2 → R+ is the solution of the
functional minimization problem defined as follows:

u(xstart, x) = inf{C(xstart,x)} ρ(xstart, x)
u(xstart) = 0 (3)

where {C(xstart, x)} is the set of all curves between the
source xstart and the current configuration x. For the sake
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of notational simplicity, and assuming that the source of
exploration xstart is fixed, we note u(xstart, x) = u(x).

The distance function u can be related to the value function
concept in reinforcement learning. The difference lies only
on the fact that value functions are refined in an iterative
process (called learning), whereas the distance function is built
from scratch. In the path planning literature one can find other
names for the distance function, such as navigation function
[13], multi-valued distance map [16] or convex-map [17].

Once the distance function is found up through the goal
configuration, the optimal path is the one which follows the
steepest descent over the distance function from the goal to
the start configuration. This backtracking technique is reliable
as no local minima are exhibited during the exploration
process.

4) Grid search algorithms: Grid search algorithms rely
on a partitioning of the C-space in three sets: Accepted
configurations for which the distance function u has been
computed, Considered configurations for which u has been
estimated and the remaining Far configurations for which u
is unknown.

The set of Considered configurations is stored in a priority
queue. On top of this queue the configuration with the highest
priority is called trial. At each iteration of the exploration
process the trial configuration is moved from Considered to
Accepted and its Far neighbors are updated and moved from
Far to Considered. The exploration process expands from the
start configuration and ends when the goal configuration is
eventually set to Accepted.

According to the priority assignment of the Considered set
we distinguish two classes of grid search algorithms (see [18]
for a survey of grid search algorithms).

a) Breadth-first search: breadth-first algorithms (BF)
give the highest priority to the Considered configuration x
with the lowest estimate of the distance function u. u(x) does
not depend on the goal configuration, that is why the distance
function is built symmetrically around the start configuration
(see figure 2a).

b) Hybrid search: hybrid search algorithms (HS) gives
the highest priority to the Considered configuration x with the
lowest f(x) defined as f(x) = (1 − α)u(x) + αh(x, xgoal).
Here h(x, xgoal) is an heuristic that estimates the residual
distance between the configuration x and the goal
configuration xgoal, and α is a constant (0 < α ≤ 1).
If α = 0.5, this popular HS algorithm is called A* algorithm.
Instead of exploring around the start configuration HS
algorithms focus the search towards the goal (see figure 2b).

5) Heuristic: When only sparse convex C-obstacles are
present, heuristically guided searches are the most efficient
techniques. These are the most commonly used heuristics. Let
xi,j be the point of coordinates (i, j) on a grid:
• 4-connexity heuristics:

h4(xi,j , x
′
i′,j′) = m(|i′ − i|+ |j′ − j|)

h4max(xi,j , x
′
i′,j′) = m(max{|i′ − i|, |j′ − j|})
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a. b. c. d.

Fig. 2. Examples of distance functions and paths using a 4-connexity: a)
BF, b) A* using the ”Manhattan distance” h4 as an heuristic, c) FM and d)
FM* algorithms. Paths computed using FM based algorithms are continuous.
FM* exploration is well focused towards the goal point because of the natural
choice of the Euclidean heuristic he in this case.

• Euclidean heuristic:

he(xi,j , x
′
i′,j′) = m

(
(i′ − i)2 + (j′ − j)2

) 1
2 (4)

where m = minΩ{τ}.

6) Computational complexity: When a Far configuration
is updated and moved to Considered a routine is called to sort
the Considered set in such a way that the configuration with
the highest priority remains the first of the queue. For optimal
efficiency the priority queue is stored in a heap structure [19].

Assume that the Considered list is ordered. When a
new element is inserted the price of reordering the list is
O(log n), where n is the number of elements in the list.
At each iteration of the exploration process the Considered
list is sorted three times at the maximum in 2D (the four
trial’s neighbors excluding at least one neighboring Accepted
configuration). Considering that the exploration process is
iterated N times at the maximum, where N is the total
number of configurations in the grid, the computational
complexity of grid search algorithms is O(N log(N)).

7) Conclusions: First, resulting paths from grid search
algorithms are discontinuous and not unique because the robot
is supposed to follow a discrete motion model. Further, even
when these paths are post optimized (see [20] for a survey
of trajectory optimization techniques), they can still cause the
vehicle to execute expensive trajectories.

Secondly, BF and HS algorithms are indeed efficient
(O(N log(N)) complexity) but they suffer from biases. Re-
sults from these discrete search algorithms can be improved
by taking a larger neighborhood for the motion model, like a 8
or a 16-connexity motion model, giving better approximations
ρd of ρ in diagonal directions. However, there will always be
an error in some directions that will be invariant to the grid
resolution. These limitations can be overcome using the Fast
Marching algorithm presented in the next section.

III. FAST MARCHING BASED PATH PLANNING

The Fast Marching algorithm was introduced in image
processing by Sethian [21]. In path planning the main interest
(developed in [22], [23]) of the Fast Marching algorithm relies
on the fact that, with the same complexity as classical grid
search algorithms, it extracts an accurate solution u of the
functional minimization problem of expression 3.
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A. Eikonal equation

Before introducing the Fast Marching algorithm itself, we
start from the observation that the functional minimization
problem of equation 3 is equivalent to solving the Eikonal
equation:

‖∇u‖ = τ (5)

We give here a geometrical intuition of how to convert
equation 3 into equation 5. It is inspired by a level set
formulation of the Eikonal equation in [24], nonetheless a
formal proof can be found in [25].

Fig. 3. On a small surface dΩ around a point x with a radius dx, one can
approximate the distance function u as a plane wave, for which the level sets
are parallel and perpendicular to the gradient ∇u of u. These observations
allow the translation of the functional minimization problem of equation 3
into the Eikonal equation 5.

We start from the fact that the gradient ∇u of u is normal
to its level sets. Let ~n = ∇u

‖∇u‖ be the outwards unit normal
vector to level sets of u located in x. Express a variation du
of u according to a variation ~dx of the position x (figure 3):

u(x + ~dx) = u(x) + 〈∇u, ~dx〉 ⇒ du(x) = 〈∇u, ~dx〉 (6)

where 〈, 〉 is the standard dot product in R2.

Within the small region dΩ of Ω centered on x with a
radius dx, we can assimilate τ as a constant, ∀p ∈ dΩ, τ(p) =
τ(x) = τ . Within dΩ level sets of u are seen as straight lines:

du(x) = τ〈~n, ~dx〉 (7)

From equations 6 and 7 we get 〈∇u, ~dx〉 = τ 〈∇u, ~dx〉
‖∇u‖ , which

leads to the Eikonal equation 5.

B. Upwind schemes and numerical approximations

The Fast Marching algorithm uses a first order numerical
approximation of the Eikonal equation 5 based on the fol-
lowing operators. Suppose a function u is given with values
ui,j = u(xi,j) on a Cartesian grid with grid spacing h.
• Forward operator (direction x): D+x

i,j = ui+1,j−ui,j

h

• Backward operator (direction x): D−x
i,j = ui,j−ui−1,j

h .
Forward and backward operators in direction y are similar.

The following upwind scheme (due to Godunov [26]) is
used to estimate the gradient ∇u in two dimensions:

‖∇uij‖2 ≈
[

max{D−x
i,j u,−D+x

i,j u, 0}2+
max{D−y

i,j u,−D+y
i,j u, 0}2

]
= τ2

i,j (8)

It is proven in [21] that this numerical scheme converges to
a correct continuous solution2.

C. Fast Marching algorithm

The Fast Marching algorithm belongs to the class of
breadth-first algorithms. At each iteration the trial configu-
ration x to be moved from Considered to Accepted is the one
with the lowest estimate of the distance function u. Contrarily
to classical breadth-first algorithms the trial’s neighbors {xi,j}
may be updated more than once using the numerical scheme
of equation 8 (see figure 4).

a. b. c.

Fig. 4. To update a neighbor xi,j (which is Far or Considered, but not
Accepted) of the trial point, we examine its 4-connexity neighborhood. a)
Only one Accepted points around xi,j , then we apply case 1. b) Two non-
opposite Accepted points around xi,j , then we apply case 2.

1) Algorithm for 2D isotropic Fast Marching: We give here
an insight of the update procedure of the trial’s neighbors
because we slightly modify it in our anisotropic version in
section IV. For more implementation details see [21] and [24].
One or two Accepted points are used to solve equation 8:

• Case 1: only one Accepted or one pair A of opposite
Accepted points around xi,j (figure 4a). Note uA =
min(u(A)). In that case equation 8 is equivalent to

(ui,j − uA)2 = τ2
i,j

which leads to

ui,j = uA + τi,j

• Case 2: at least two non-opposite Accepted points around
x, they belong to two crossing pairs A and B (figure 4b).
Note uA = min(u(A)) and uB = min(u(B)). In that
case equation 8 is equivalent to

(ui,j − uA)2 + (ui,j − uB)2 = τ2
i,j . (9)

Based on the discriminant test of equation 9 one or two
Accepted points are used to solve it:

– if τi,j > |uA − uB |

ui,j =
1
2

(
uA + uB +

√
2τ2

i,j − (uA − uB)2
)

– else

ui,j = min(uA, uB) + τi,j

2This numerical scheme actually converges to the viscosity solution in the
sense of Crandall and Lions [27].
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2) FM*: The original Fast Marching algorithm uses the
same priority assignment than breadth-first algorithms. We
can introduce the Euclidean heuristic defined in expression
4 to speed up the exploration process. We call FM* this
heuristically guided Fast Marching because it can be seen as
the equivalent to the A* algorithm in the continuous domain.

Note that if the cost function τ(x) is the inverse of the
AUV velocity than the distance function is equivalent to
the first arrival travel time t of the vehicle. Using a time
dependent cost function τ(x, t) makes the FM* easy to
extend for planning paths amongst moving obstacles.

3) Backtracking: The Fast Marching algorithm computes a
first order estimate of the gradient of the distance function. The
optimal path is naturally extracted from the goal to the start
configuration by performing a gradient descent backtracking.

D. Isotropic Fast Marching applied to Underwater Path Plan-
ning

The isotropic Fast Marching and the FM* algorithms are
validated here using Matlab and C++ simulations run with
simulated and real underwater environments.

1) Non-convex obstacles: Non-convex obstacles are a prob-
lem for embedded path planning algorithms using potential
field methods [12]. Figure 5 shows that the Fast Marching
algorithm associated with a gradient descent naturally deals
with the concavity since the start configuration is the only
global minimum of the distance function u.
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Fig. 5. a) A binary cost function. b) Exploration and optimal path found using
A* algorithm. c) Exploration and optimal path found using FM* algorithm.
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Fig. 6. A close-up on figures 5b and 5c. One can see that FM* algorithm
gives a smoother solution (b) than A* algorithm (a). This is thanks to the
better FM* estimate of the distance function in the continuous domain.

Note that to increase the safety distance between the path
and the C-obstacles, a simple dilatation of the cost function
is required.

2) Complex C-spaces: The computational complexity of
Fast Marching based path planning is (O(N log N ) where
N is the number of pixels in the image. This efficiency is
not affected by the complexity (i.e. number and shapes of
C-obctacles) of the C-space. Figure 7 shows a harbor for
which the main entrance is obstructed by a net. Fast Marching
exploration naturally finds the little back entrance contrarily
to probabilistic path planning methods which may not return
any solution to this ”narrow passage” problem [28].

Fig. 7. A complex simulated cost map of a harbor obstructed by a net (on
the left) and the optimal path found using the FM algorithm (on the right).

3) Real environment: A C++ implementation of the 2D Fast
Marching based path planning method has been applied to real
sonar images, see figure 8. These images have been processed
in-line in the simulator of the Ocean Systems Laboratory.

Fig. 8. From left to right and up to down: original sonar image, processed
images (using a salient filter) and the optimal path. Sizes of these images
are 200x50 points. Computation time is approximately 10 ms for the Fast
Marching algorithm and 1 ms for the gradient descent algorithm.

IV. DIRECTIONAL CONSTRAINED PATH PLANNING

The Fast Marching method is a particular case of ordered
upwind methods (OUM), which can be applied to isotropic or
anisotropic medias. It is shown in [29] that the computational
complexity of OUM methods is O(ΥN log N), where N is the
number of configurations and Υ is the anisotropic coefficient
which can be much greater than one. Then OUMs are not fast
any more.

The idea behind our anisotropic Fast Marching method
is to simplify OUMs by considering the gradient ∇u as a
good estimate of the wavefront propagation of the distance
function u. This is equivalent to assuming that the field of
force F is smooth. This way the O(N log N) complexity
of the original Fast Marching algorithm is preserved in the
anisotropic version. One can note a similar attempt in [30],
but the authors do not analyze the complexity of their method.
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A. Anisotropic cost function

The original Fast Marching algorithm is fast thanks to the
resolution of the simple quadratic equation 8 for u. Since τ
appears as a square in this equation our idea is to build a
new cost function τ̃ linearly dependent on u. We split the cost
function in two parts: τ̃ = τobst + τvect. τobst is linked to the
obstacles as previously and τvect is defined as follows:

∀xi,j ∈ Ω, τvect(i, j) = α

(
1− 〈∇ui,j · ~Fi,j〉

Qi,j

)
≥ 0 (10)

where Qi,j = (τobst(i, j) + 2α) supΩ

{
‖~F‖

}
is a normaliza-

tion term so that
∣∣∣ 〈∇u·~F 〉

Q

∣∣∣ ≤ 1, and α is a positive gain.
τvect models the external current forces applied to the

vehicle. It is equivalent to say that a force favors the vehicle
when both force and vehicle are pointing in the same direction.

Note that the concept can be generalized to path planning in
any field of forces, like path planning for sailing applications,
where F is a wind field for instance.

B. Anisotropic Fast Marching algorithm

The anisotropic version of the Fast Marching algorithm is
similar to the isotropic version. A new quadratic equation is
solved:

‖∇uij‖2 ≈
[

max{D−x
i,j u,−D+x

i,j u, 0}2+
max{D−y

i,j u,−D+y
i,j u, 0}2

]
= τ̃2

i,j (11)

The trial’s neighbors {xi,j} are updated in 4-connexity (see
figure 4). Let {Ai} be the Accepted points around xi,j and let
~Fi,j = Fx ~ux + Fy ~uy be the vectorial force in xi,j .
• Case 1: one Accepted point

First, suppose that xi,j is surrounded only by one
Accepted point, i.e. {Ai} = {A}.

Equation 11 becomes (ui,j − u(A))2 = τ̃2
i,j .

In this case ∇ui,j = ± (ui,j − u(A))−−−−→ux or y , then

ui,j = u(A) +
τobst(i, j) + α

1 + α
Qi,j

Fx or y

• Case 2: two Accepted points
Suppose that xi,j is surrounded by two neighboring
Accepted points, i.e. {Ai} = {A1, A2}. The case where
A1 and A2 are opposite is farther considered.

Equation 11 becomes:

(ui,j − u(A1))
2 + (ui,j − u(A2))

2 = τ̃2
i,j (12)

which leads to the following conditions:
– if |(u(A2)− Lb)− (u(A1)− La)| ≤ L

√
U

ui,j =
−V +

√
∆

2U

– else ui,j = ∞

where




a = α
Q

Fx

b = α
Q

Fy

λ = τobst(i, j) + α
L = λ

1−(a2+b2)
> 0

∆ = 4λ
L

ˆ
UL2 − [(u(A2)− Lb)− (u(A1)− La)]2

˜
U = 2− (a + b)2 > 0
V = 2u(A1)(a

2 + ab− 1) + 2u(A2)(b
2 + ab− 1)

+2λ(a + b)

This is a generalized formulation of the isotropic Fast
Marching equations. Conditions about u(A1) and u(A2)
are respectively translated of La and Lb (related to Fx

and Fy).

• Computation of u
In the case of two neighboring Accepted points {Ai} =
{A1, A2} the computation of u needs three steps:

– First we suppose that xi,j is surrounded only by one
Accepted point, {Ai} = {A1}. We apply the case 1
and the value u1 is stored.

– Secondly we suppose that xi,j is surrounded only
by one Accepted point {Ai} = {A2}. We apply a
second time the case 1 and the value u2 is stored.

– Thirdly we suppose that xi,j is surrounded by two
neighboring Accepted points, {Ai} = {A1, A2}. We
apply the case 2 and the value u3 is stored.

Finally ui,j = min{u1, u2, u3} gives the correct viscosity
solution u for the distance function. For the case where
A1 and A2 are opposite we just skip the third step.

• Three or four Accepted points
The method for three or four Accepted points around xi,j

is exactly the same as for two Accepted points.
– We apply the case 1 for each Accepted points and

we store values of u.
– We apply the case 2 for each couple of two consec-

utive Accepted points and we store values of u.
Finally ui,j = min{uk}.

C. Limitation and results

Note that we define τvect = α
(
1− 〈∇u·~F 〉

Q

)
for τvect to

be linear for u. This choice allows small runtime but most
of underwater vehicles have a more complex behavior than
a linear reaction to currents. In that case an acceptable first
order approximation of the AUV reaction to currents needs to
be found.

Figures 9 and 10 show the influence of fields of force in
underwater path planning (α = 1, supΩ

{
‖~F‖

}
= 1). The

gain on the total cost of the paths computed using anisotropic
FM algorithm is about 10% compared to the paths computed
using isotropic FM for both figures. Runtime on these 100x100
figures is less than 1 second.
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Fig. 9. On the left an isotropic Fast Marching, on the right our anisotropic
version with currents symbolized with arrows. The path computed using the
anisotropic FM leads to a 10% gain over the total cost of the trajectory.

Fig. 10. Path found in absence of currents on the left, in presence of currents
on the right. The path computed using the anisotropic FM leads to a 8% gain
over the total cost of the trajectory in this case.

V. CURVATURE CONSTRAINED PATH PLANNING

In this section the influence of the cost function τ on the
smoothness of a path C is demonstrated. Here C is the solution
of the functional minimization problem:

Ω2 → C(Ω)
(x, x′) 7→ C = argmin{C(x,x′)}ρ(x, x′) (13)

where C(Ω) is the set of all curves in Ω and ρ is the continuous
metric:

ρ(x, x′) =
∫

[0,1]

τ(Cx,x′(s))ds (14)

Both isotropic and anisotropic Fast Marching methods com-
pute a continuous solution C associated to the continuous
metric ρ. Therefore, tools from differential geometry can be
used to examine the curvature properties of C.

A. Problem statement

Let us define the kinematic constraints considered here.
• Curvature magnitude of a curve C: k(C) = ∂2C

∂2s
• Curvature radius of a curve C: R(C) = 1

|k(C)|
• lower bound of the curvature radius along a curve C:

Rmin(C) = infs∈[0,1] R(C(s)).
• Turning radius of a vehicle v: r(v)

Our goal in this section is to express a formal link between
the cost function τ and the lower bound of Rmin. In other
words we want to find a lower bound Rmin(τ) before com-
puting the distance function u (and before extracting any path).

B. Lower bound of the curvature radius

1) Isotropic case: Using the differential geometry frame-
work, it is shown in [31] that the Euler-Lagrange equation

associated to functional minimization of equation 13 is:

τk ~N− < ∇τ, ~N > ~N = 0. (15)

where ~N is the normal unit vector to a curve C and 〈, 〉 is the
standard dot product in R2.

From equation 15, it is deduced in [24] that the curvature
magnitude k is bounded along any path C minimizing ρ. The
lower bound for Rmin is then:

Rmin ≥ infΩ τ

supΩ {‖∇τ‖} (16)

The conclusion is that to increase the lower bound of the
curvature radius Rmin(C) of an optimal path C, two choices
are possible (see figures 11 and 12 for illustrations):

1) smoothing the cost function to decrease supΩ

{‖∇τ‖},
2) adding an offset to the cost function to increase the

numerator infΩ τ without affecting the denominator.
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Fig. 11. Influence of smoothing the cost function.
a) A binary cost function τ (τ (C-free)=1 and τ (C-obst)=11) and the relative
optimal path Ca, Rmin(Ca) = 332 (in arbitrary unit).
b) τ after smoothing using a 11x11 average filter, Rmin(Cb) = 1216.
c) τ after smoothing using a 21x21 average filter, Rmin(Cc) = 1377.
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Fig. 12. Influence of both smoothing and adding an offset. The cost function
τ is similar to the one in figure 11a.
a) Offset = 5, average filter 7x7, Rmin(Ca) = 1977.
b) Offset = 5, average filter 15x15, Rmin(Cb) = 2787.

At this stage experiments have to be carried out to study
the applicability of our curvature constrained path planning
technique to real AUV missions.

2) Anisotropic case: With our anisotropic cost function τ̃
we show in the appendix that the Euler-Lagrange equation
becomes:

〈∇τobst, ~N〉 ~N +
α

Q

(
∂Fx

∂y
− ∂Fy

∂x

)
~N − τ̃ k ~N = 0

From this equation, we derive the following lower bound of
the path curvature radius:

Rmin ≥ infΩ{τobst}
supΩ {‖∇τobst‖}+ 2α

infΩ{Q}‖JF ‖∞
(17)

where JF is the Jacobian of ~F on Ω and ‖·‖∞ is the L∞ norm.



8

Similarly to the isotropic case, there are three parameters to
tune to increase the curvature radius Rmin(C) of an optimal
path C:

1) smoothing τobst,
2) adding an offset to τ̃ ,
3) or smoothing the field of force ~F to decrease ‖JF ‖∞.

VI. MULTIRESOLUTION PATH PLANNING

Multiresolution methods start with the idea that it is not
necessary to represent the C-space in an uniform way. Some
regions may be of more interest than others from a path
planning point of view. For example a vast empty region
may not need to be described as precisely as a region which
contains many C-obstacles. This leads us to consider the
partitioning of the environment as a crucial issue to optimize
a path planning method.

A. Unstructured mesh framework

The method proposed by the authors is to couple a quadtree
decomposition of the C-space with a Delaunay triangulation.

1) Quadtree decomposition: The quadtree decomposition
(or octree decomposition in more than two dimensions) is
based on a recursive decomposition of a uniform grid into
blocks. The size of blocks can depend either on the informa-
tion into them [32] or on their distance from the robot [33].

Quadtrees allow efficient partitioning of the environment
since single blocks can be used to encode large empty regions.
However, two main drawbacks remain. First, paths generated
by quadtrees are suboptimal because they are constrained to
segments between centers of blocks. The framed-quadtree
technique [34] improves the situation but it is only applicable
for sparse environments. Secondly, since the initial C-space
is transformed in a tree data structure it is not easy to define
the spatial neighborhood of each block. A simple solution is
to test all the neighbors of each block [35].

2) Delaunay triangulation: The method proposed by the
authors is to couple the quadtree decomposition with an
adaptive mesh generation. The Delaunay triangulation is a
good candidate as fast and robust implementations exist.

The input of the Delaunay mesh generation is the set of
nodes q with their cost τ(q) given by the quadtree decompo-
sition. The output is a net of vertices linked to their neighbors
by edges, see figure 13. Versions of breadth-first and Fast
Marching algorithms on this kind of unstructured mesh [36]
are implemented in the following section.

B. Fast Marching algorithm on unstructured meshes

The original Fast Marching algorithm computes a distance
function over a C-space sampled in a rectangular orthogonal
mesh Ω in O(Npoints log Npoints) steps, where Npoints is
the total number of grid points. The idea in this section is to
perform the Fast Marching algorithm over the same C-space
partitioned into a mesh using much less nodes. It is shown

a. b.
Fig. 13. a) The original 1000x1000 image. b) The mesh computed from
the quadtree decomposition using a Delaunay triangulation (1400 vertices).
The links between the vertices of this mesh and their neighbors are well
defined so that the propagation of the distance function from one vertex to
its neighborhood is straightforward.

in [36] that an extension of the Fast Marching algorithm
on unstructured meshes with Nnodes nodes has the same
O(Nnodes log Nnodes) complexity.

Because there is no natural choice of the coordinate system
for an unstructured mesh (see figure 14), for each simplex
xx1 . . . xn we compute the gradient ∇u as a linear combi-
nation of the n directional derivatives along the unit vectors
Ti = x−xi

‖x−xi‖ , for i = 1 . . . n.

a. b.

Fig. 14. The original FM algorithm is implemented on a Cartesian grid (a),
the update for the point x is computed from the simplex xxAxB with the
smallest values uA and uB . When implemented on an unstructured mesh (b)
the update for the point x is computed from a pair of adjacent neighbors.

Let T be the nonsingular matrix having vectors Ti as its
columns. Define a = 1

‖x−xi‖ , b = − ui

‖x−xi‖ and Q =
(TTT )−1. Eikonal equation 5 becomes the following quadratic
equation to solve for u(x) (see [36] for further details):

(aT Qa)u2 + (2aT Qb)u + (bT Qb) = τ2 (18)

C. Results

Figure 15 depicts the solution computed with a BF and a
FM algorithm on the grid of figure 13a. Figure 16 depicts the
solution computed with a BF and a FM algorithm on the mesh
of figure 13b.

The multiresolution method gives only suboptimal paths.
We partially overcome the problem of suboptimal paths by in-
terpolating the distance function (computed on mesh vertices)
on the entire underlying grid and by performing a gradient
descent backtracking on this grid.

However, an interesting feature of both BF and FM on
adaptive meshes compared to their implementation on uniform
grids is their computation load.It is approximately divided by
1000 (on a Matlab platform), including the mesh generation.
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a. b.

Fig. 15. Paths computed on the regular 1000x1000 grid on the original
image (runtime is about 100 seconds): a) using a 4-connexity BF b) using a
4-connexity FM.

a. b.

Fig. 16. Paths computed on the 1400 vertices mesh: a) using BF b) using
FM algorithms adapted on meshes. Both paths are suboptimal, but they are
computed in 0.1 second.

Surprisingly BF gives ”similar looking” paths than FM on
the mesh. One could expect a better behavior of FM on the
mesh thanks to its first order estimate of the distance function
over the mesh. At this stage a tool has to be designed in order
to compare the ”quality” of a path. To the knowledge of the
authors, no general criteria exist in the literature to objectively
estimate the acceptability of a path for a given vehicle.

VII. CONCLUSION AND FUTURE WORK

The underwater world is a very demanding environment
for path planning algorithms. Great efforts are currently being
made to develop autonomous systems as underwater technol-
ogy becomes more mature. Several key issues for underwater
path planning are addressed in this paper.

Reliability of path planners is improved by developing an
efficient algorithm called FM* which is a continuous version
of A* based on the Fast Marching algorithm. First, this
algorithm is proved to find a continuous path when it is im-
plemented on a discretized perception of the world. Secondly,
a practical implementation of anisotropic Fast Marching is
proposed to adapt our path planning method to underwater
currents. Thirdly, a novel work is presented to take the vehicle
kinematics into account for both isotropic and anisotropic
environments. It is shown that smoothing the map of the
environment leads to greater path curvature radius. Finally, a
mesh conversion of the input data is used to drastically reduce
the computation load by reducing the input data set of the path

search algorithm. However, this reduction produces a loss of
information that can affect the optimality of the resulting path.
This highlights the need for future work to find an analytical
tool to measure the path acceptability.

In all this work we assume that the world is static and
described a-priori in a cost function. The authors are currently
developing a dynamic version of the FM* in order to improve
its replanning capacity in a-priori unknown real environments.

APPENDIX

PROOF OF THE UPPER BOUND OF THE CURVATURE
MAGNITUDE FOR THE ANISOTROPIC CASE

Given two points x and x′ in a domain Ω ⊂ R2 we consider the functional

E(C) =

Z

[0,1]
τ̃(C(s))ds (19)

to minimize over the following set of curves

C ∈ C2 :
[0, 1] → Ω

s 7→ [x(s), y(s)]

where τ̃ = τobst + τvect = τobst + α
“
1− 〈∇C·~F 〉

Q

”
is the anisotropic

strictly positive cost function3. We name C2 the set of curves derivable twice
and s the arc-length parameter of C between x and x′ (C(0) = x and
C(1) = x′).

We want to show that the Euler-Lagrange equation of this functional
minimization problem is

〈∇τobst, ~N〉 ~N +
α

Q

„
∂Fx

∂y
− ∂Fy

∂x

«
~N − τ̃k ~N = 0

where ~N is the normal unit vector to a curve C and 〈, 〉 is the standard dot
product in R2.

One can rewrite E(C) =
R
[0,1] τ̃(C(s))‖C′(s)‖ds. Note that

it is always possible to parameterize a curve C ∈ C2 so that
∀s ∈ [0, 1], ‖C′(s)‖ = ‖ dC

ds
(s)‖ = 1.

We consider the curve C which minimizes E. Let η ∈ C2 be a small
deformation of C with the limit conditions η(x) = η(x′) = 0 (figure 17).

Fig. 17. The curve η is a small deformation of the curve C minimizing E.

We define φ(ε) = E(C + εη), where ε > 0. Then dφ
dε

= 0 when ε tends
to 0. We suppose τ derivable on Ω, then:

dφ

dε
=

Z

[0,1]

d

dε

ˆ
τ̃ (C + εη) ‖C′ + εη′‖˜ ds

First,

d
dε

h
τobst (C + εη) + α

“
1− 〈(C′+εη′)·~F (C+εη)〉

Q

”i

= 〈∇τobst, ~η〉 − α
Q

d
dε
〈C′ + εη′, ~F (C + εη)〉

Secondly,
limε→0

n
d
dε
〈C′ + εη′, ~F (C + εη)〉

o

= 〈~F , ~η′〉+ (~TT · JF ) · ~η

3Note that we replaced ∇u of expression 10 by ∇C = ~T because C is the curve
found after a gradient descent on u.
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where ~TT is the transpose of the tangent vector to C and JF is the Jacobian
of ~F along the x and y coordinates.

Then,

limε→0

n
dφ
dε

o

=
R
[0,1]〈∇τobst, ~η〉 − α

Q
〈~F , ~η′〉 − α

Q
(~TT · JF ) · ~η + τ̃〈~T , ~η′〉ds

We integrate by part to get:
Z

[0,1]
τ̃〈~T , ~η′〉ds = −

Z

[0,1]
τ̃k〈 ~N, ~η〉ds

and to get
Z

[0,1]
〈~F , ~η′〉ds = −

Z

[0,1]

h
(JF · ~T )T · ~η

i
ds

Hence

limε→0

n
dφ
dε

o

=
R
[0,1]

D“
∇τobst + α

Q

`
JT

F − JF

´T · ~T − τ̃k ~N
”

, ~η
E

ds

Noticing that ∀~η, dφ
dε

= 0
and that “

JT
F − JF

”T · ~T =

„
∂Fx

∂y
− ∂Fy

∂x

«
~N

we get the Euler-Lagrange equation

〈∇τobst, ~N〉 ~N +
α

Q

„
∂Fx

∂y
− ∂Fy

∂x

«
~N − τ̃k ~N = 0 (20)

Finally we derive an upper bound of the curvature magnitude:

|k| ≤
supΩ {‖∇τobst‖}+ 2α

infΩ{Q}‖JF ‖∞
infΩ{τobst}

(21)
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