Automated approach to classification of mine-like
objects in sidescan sonar using highlight and shadow

information
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Abstract: The majority of existing automatic mine detection algorithms which have been
developed are robust at detecting mine-like objects (MLOs) at the expense of detecting many false
alarms. These objects must later be classified as mine or not-mine. The authors present a model
based technique using Dempster—Shafer information theory to extend the standard mine/not-mine
classification procedure to provide both shape and size information on the object. A sonar simulator
is used to produce synthetic realisations of mine-like object shadow regions which are compared to
those of the unknown object using the Hausdorff distance. This measurement is fused with other
available information from the object’s shadow and highlight regions to produce a membership
function for each of the considered object classes. Dempster—Shafer information theory is used to
classify the objects using both mono-view and multi-view analysis. In both cases, results are

presented on real data.

1 Introduction

Sidescan sonar imagery can provide high resolution images
of the seafloor, making it useful for a variety of civilian and
military applications. One such application is in the field of
mine-countermeasures (MCM), where the advances in
autonomous underwater vehicle (AUV) technology have
made it necessary to research automated analysis tech-
niques. Complete automated MCM systems generally
operate using a two-tier process where the first stage detects
all possible mine-like objects (MLOs). The second part of
the process classifies each of the objects as mine or not-
mine. This paper focuses on the classification section of this
process, extending the basic mine/not-mine discrimination
to include shape and dimension information on the detected
object.

A common approach used to classify the objects is to
compare an extracted set of features from the MLO [1-4] to
a set of training data. This approach works well when the
test data are similar to the training data set but can provide
poor results when this criterion is not met [5]. Sidescan
sonar imagery is very dependent on the sensor to target
azimuth, making images of the same underwater scene look
very different depending on the particular conditions. This
creates problems when attempting to analyse feature sets to
determine if an MLO is a mine or not [6]. Other
classification techniques use the more specific knowledge
that objects in sidescan sonar leave a recognisable signature.
This is characterised by a paired highlight and shadow
region [7]. Man-made objects such as mines often have a
regular form which generates a recognisable shadow region.
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The appearance of this shadow region is more constant than
the highlight region to change in the sonar conditions. This
has led to active research being carried out in shadow
extraction techniques [7-9]. Classification models have
been developed which then attempt to match the extracted
shadow to a template approximation of the shadow expected
from a man-made object [10—12]. While this approach has
been shown to give good results, it is completely removed
from the sonar shadow formation process. Therefore the
plausibility of the tested templates is generally not
considered during the classification process.

This paper will present a novel classification model that
considers information from both the highlight and shadow
region of the object. These regions are first extracted from
the sidescan sonar image using a co-operating statistical
snake model (CSS) [13]. A sonar simulator is then used
iteratively to generate shadow regions from objects in
different scenarios (size, orientation, depth). These synthetic
shadows are compared to the real objects shadow using the
Hausdorff distance [14, 15]. This information is fused with
additional highlight and size information to produce a
membership function for each of the considered object
classes. Dempster—Shafer (D-S) information theory then
uses these membership functions to carry out mono- and
multi-view classification analysis [16]. Both options are
useful for sidescan data due to the ‘lawn-mower’ nature of
surveys, which ensures that the same object often appears in
multiple images. The ability to consider multi-view analysis
allows the classification system to use more of the available
information before providing a classification result. The
current system classifies the object as a cylinder, sphere,
truncated cone or clutter (not-mine), although new classes
can easily be included. To avoid confusion, a clutter object
is defined as any object which is not a mine. Results for the
mono- and multi-view analyses are show on real data sets.

2 Extracting the object’s shadow

A three-stage solution to the automated CAD/CAD
(computer aided detection/classification) problem was
proposed by Reed et al. in [13].
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The first stage detects possible mine-like objects (MLOs)
using a Markov random field (MRF) model. Once detected,
the highlight and shadow of the object are extracted in the
second stage using a co-operating statistical snake model.
Other shadow extraction techniques have been developed
using template models [12, 10], fuzzy logic [8] and statistical
models [17, 11]. These provide good results on simple
backgrounds but often fail in the presence of complex
backgrounds such as sand ripples. The CSS model obtains
accurate shadow segmentations on different seabed types by
using available a priori information on the relationship
between the highlight and shadow region of the object.
Examples of the CSS segmentation results can be seen in
Fig. 1. All the images seen in Fig. 1 are from real sidescan
data except the middle-centre and middle-right images,
which have been generated using a sonar simulator model
[18]. The real data shown were collected using an EdgeTech
dual frequency DF-1000 Side Scan Sonar at frequency
390 kHz. The resolution of these images is 10 cm.

The detection and co-operating statistical snake phases of
the proposed CAD/CAC approach have been tested on over
200 real sidescan sonar images taken from the BP’02 test
experiments at the NATO Saclant Centre, La Spezia, Italy
[19]. Over 80% of MLOs were successfully detected with
their highlight and shadow regions accurately extracted.
This was a shallow water survey, demonstrating the model’s
ability to cope with multi-path effects. However, it should
also be noted that these effects were minimised by using a
high frequency sonar under controlled conditions.

The co-operating statistical snake model is also useful for
classification purposes as both the highlight and shadow
regions are extracted. Both these regions contain infor-
mation which can be used when classifying an object.

3 Data information
All the results relating to the classification model presented

in this paper were obtained using real sidescan sonar data.
The data sets were obtained from GESMA, France and

the DRDC-Atlantic/Saclantcen Maple 2001 trials. The data
from GESMA were taken using an EdgeTech DF 1000
sonar mounted on an AUV. The DRDC-Atlantic data used a
Klein 5500 sonar with a towfish. Table 1 contains relevant
information regarding the two sonars.

As detailed before, the GESMA data were collected using
an AUV. The AUV maintained a constant altitude by
carrying out altitude following manoeuvres using bottom
bathymetry data [20]. Regular GPS fixes were obtained to
minimise the AUV positioning error by regularly resurfa-
cing the AUV.

The DRDC-Atlantic sonar used a towfish and was
equipped with an altimeter and pressure sensors to ensure
that the sonar depth and height information were accurate.

4 Generation and comparison of synthetic object
shadow

When an MLO object has been detected, information such
as the image resolution p, sonar fish height ¢ and the slant
range to the object s are readily available (see Section 3).
This allows synthetic images containing objects to be
generated under the same sonar conditions that the MLO
was detected. For the experiments detailed here, the use of
regular GPS fixes and a towfish for the GESMA and DRDC-
Atlantic data, respectively, ensured that this information
was reasonably accurate. Further improvements in inertial
navigational systems (INS) would allow this synthetic
simulation to be improved.

For the purposes of mine classification, the tested objects
were limited to the cylinder, sphere and truncated cone
classes, which closely represent the shape of many real
mines. The cylinder class is assumed to be completely
described by parameters @ .,y = {r¢y1, leyis deyiy ey}, Where
Fey 18 the radius of the cylinder, [, is the length of the
cylinder and ¢,,, is the angle of the cylinder’s major axis
with respect to the along track direction. The parameter d..,,
describes how deeply the cylinder is sunk into the seafloor,
with d.,; = 0 relating to a cylinder sitting proud on the

[

N
"’""l,"'
Al |' 1" ¥

Fig. 1  Examples on real and synthetic sidescan data of the co-operating statistical snake model’s ability to segment both the

highlight and shadow regions of the object

The model successfully copes with a variety of seabed types

Table 1: Sonar information relating to the two different data sets used in this paper

Data set Frequency, kHz Sonar depth, m Sonar height, m Image resolution, cm
GESMA 390/105 0-30 5-10 3.3
DRDC-Atlantic 455 10-25 8-22 10.0
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Fig. 2 One row of a height map image of a partially sunk sphere
where line-of-sight calculations are being used to determine the
resulting shadow region

seabed. The sphere class is described by parameters @,,, =
{rgn: dypp} and the truncated cone class by 0, =

Teones deone }» Where the representations used are the same
as for the cylinder class. For simplicity, only the base-radius
Teone Was used to describe the truncated cone class. The
radius at the top of the truncated cone was assumed to be
0.57,,,, While the height was set at 0.87,,,,.. This is in good
agreement with currently tested truncated cone objects [21]
and allowed a generic truncated cone class to be specified
rather than generating a specific class for each known mine
type. Using these parameters, object height maps with the
same resolution p as the real image can be generated easily.

4.1 Generating the synthetic shadow regions

The object shadow region is determined from the object’s
height map by considering a simple line-of-sight calcu-
lation. This is an approximation from an existing sonar
simulator [18] which assumes isovelocity conditions and a
simple point source receiver where the source and receiver
are colocated. Effects such as beampattern are assumed to
be compensated for. This reduction in the model is
applicable when it is only the generated shadow which is
of interest rather than the full backscattered signal. Figure 2
contains the cross-section of an object where simple
geometry can be used to determine the shadow region.

For the spherical model, consideration was given to the
underside region of the sphere, which can sometimes allow
the sonar to reach regions behind the object, dependent on
the sphere depth d,,,. Figure 3 contains example shadow
regions from the three object classes where the object depth
has been altered.

4.2 Comparing the shadow regions

As a consequence of the nonlinear shadow formation
process, the same object at a different orientation will
provide very different shadow regions. Standard pattern
recognition techniques [22—24] are therefore difficult to use

8 -

p_J » >

c

Fig. 3 Example shadow regions

a From the cylinder class

b From the sphere class

¢ From the truncated cone class

The object’s burial depth increases from left to right

50

when matching the extracted real shadow regions to the
generated synthetic shadows. The Hausdorff distance [14] is
a technique which measures the similarity between two
shapes. Defining ¥ = {y;, ..., y,}and V = {v; ..., v,} as
the points on the perimeter of the real and synthetic shadow
regions, respectively, the Hausdorff distance is defined as

H(Y,V) = max(h(Y,V), h(V,Y)) (1)
where
A(Y,V) = maxmin ||y —v| (2)

and [|-|| is some underlying norm on the points of Y and V.

Function A(Y, V) is the directed Hausdorff distance and is
computed by first computing the distance between each
point in Y to its nearest neighbour in V. A(Y,V) is the
maximum of this set of values. Therefore if A(Y,V) = u,
each point in ¥ must be within distance « of some point in V.
A similar process is carried out to compute i(V, V), with the
Hausdorff distance H(Y, V) being designated the maximum
value of the two directed distances. H(Y, V) is therefore a
measure of mismatch between Y and V. Unlike many other
methods for comparing shapes, there is no explicit pairing of
points in Y with points in V. The technique is also fast to
compute, which is necessary when used within an iterative
process. This technique would not cope well with outlier
points on the shadow perimeters. However, the co-operating
statistical snake model includes shape regulating priors
which do not allow the extracted shadow to include jagged
peaks [13], ensuring that this is not a problem.

4.3 lIterative matching process

An iterative process was used to search through 0., O,
and @,,,, to find the best match from each class. To limit
the parameter space tested by the model, constraints can be
imposed by considering the real object’s extracted highlight
and shadow regions. Moment analysis was used to define
the image ellipse of the object highlight region [25]. This
allowed estimates of the major and minor axis of the
highlight to be obtained, which were used to determine
initial values for l.y, rey, Fopn and 1. Angle ¢, was also
initialised considering moment analysis. Defining i as the
angle of the principal axis relative to the across-track
direction and p,,. w,z € {0,1,2} as the centred moments
where

I 201
V= Etan ! <7) (3)

Moo — Hoz

a good initial value for ¢, can be obtained [25]. Initial
estimates for depth parameters d,;, d,,. and d,,, are found
by considering Fig. 2 to obtain

c-€
b:
f+e

where b is the height of the object, ¢ is the maximum
shadow length over all the rows of the shadow region, € is
the sonar fish height and fis the distance to the object. As an
estimate for the radius has already been obtained, a value for
the depth can be computed by considering b.

Large margins were set on each of the initial parameter
estimates, defining a discretised parameter space for each
class which had to be searched through to find the best fit to
the MLO’s shadow. The minimum parameter increment
allowed was set at the resolution of the image being tested.
The parameter space for both @, and O, was two-
dimensional, allowing a quick exhaustive search to be used
to find the best Hausdorff distance. The parameter space for

(4)
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O, was four-dimensional. A simple maximum likelihood
search was carried out to find the lowest value for H,,;. This
has the disadvantage of being more time-consuming than for
the other two classes (around 60 s to compute on a Pentium
4 1.3GHz PC) but was necessary to guarantee a good
estimate.

For cases where multiple parameter values gave the same
Hausdorff distance H;, j € {cyl, sph, cone}, the most mine-
like set of dimensions (those that maximise /" (©;)
described later in Section 5.2) were used. This increases
the false classification rate but also increases the chance of a
mine being correctly classified.

This model-based approach also has the advantage of
being relatively insensitive to noise. The co-operating
statistical snake model has been shown [26] to be very
robust to high levels of noise. Once an accurate shadow
extraction has been achieved, the model-based nature of the
classification ensures that noise does not further affect the
model.

After the iterative matching process, each object class is
allocated its lowest Hausdorff distance value H}’ obtained
with parameters ©; for j € {cyl, sph, cone}. This infor-
mation is then fused with additional information to produce
a membership function for each of the classes.

5 Determining the class membership functions

Fuzzy membership functions are often used when a decision
needs to be made by considering multiple sources of
information [27]. These functions lie in the real, closed
interval [0, 1]. For classification purposes, the overall
membership function for each class is defined by
a)fmal(l‘ljb, @j,a) _ wj/fmu.v(l_ljb) « U);)ar(@j) « wjhlgh((x) (5)

Function }““(H) considers the classes best Hausdorff

distance values. /" (@;) considers the synthetic object
parameter values (i.e length, radius etc.) used to obtain Hjb,
while coj-”gh(oc) considers the elongation (the ratio of the
major/minor axis) o of the unknown object’s extracted
highlight region where j € {cyl, sph,cone}. These three
terms are now explained in more detail.

5.1 Function w]®(H)

This function considers the best Hausdorff distance Hjb
obtained for each of the classes. The shape of the
membership function was determined by training the
model on real sonar data from known classes. If the sonar
simulator exactly modelled the real sonar process, the
correct object class would be expected to give a Hausdorff
distance value H}’ ~~ (0. While accurate, such sonar models
are computationally heavy, making them unsuitable for use
within an iterative matching process. The line-of-sight
simulator described in Section 4 produced Gaussian
distributions around non-zero Hausdorff values. It should
also be noted that the training and testing data were
completely separate, with no overlap between the sets. The
function was defined for each of the classes by

o (H}) =1 if H} <,

(H —in)?
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where m; and af are the mean and variance values of
the class Gaussian distributions. The specific function
values used were ., = 5.17, Mg, = 5.42,Mpp, = 5.3,

Ufy, = 3.02, agph = 1.5 and 0?,, = 3.9. The training was
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carried out on different data-sets of objects provided by
GESMA and DRDC-Atlantic.

The data sets were visually very different but as the model
incorporates information such as the resolution p of the
image, similar Hausdorff distance values were obtained on
both. An interesting aside is that if the sonar simulator was
made more complex, the membership functions could be
made more severe, which would ensure larger separability
between the different classes and so an improved classifi-
cation rate.

5.2 Function w/‘.’a’(@j)

The first membership function describes the degree of match
between the synthetic shadow from each class and the real
MLO’s shadow. While the synthetic shadow may visually
appear very similar to the real shadow, no consideration has
yet been given to the parameters of the synthetic object. This
membership function considers how closely parameters ©;
match real-mine dimensions. The class membership
functions are defined using functions I'(:), ¥(-), Q(-) and
II(-) as shown in Fig. 4, where I'(-) relates to the length of
the cylinder, ¥(-) to the radius of the cylinder, Q(-) to the
radius of the sphere and I1(-) to the base radius of the
truncated cone. The form of these functions has been chosen
for general mine-like dimensions but could be made
case-specific.
The specific membership functions are defined by:

Wy (@) = max{T (leys), I'(leyy = p), T'(leyt + p)}

x max{¥(r.y), ¥(rey —p), P(rey+p)}
wls);}:(@xph) = max{Q(ryn), Lryn — p), Lryn +p)}
one(Ocone) = Max{II (reone), H(reone—p)s M (reone + p)}

(6)

where p is the resolution of the image being considered. The
fuzzy t-conorm function max{-} [28] was used to ensure
that errors in the parameter measurement due to the image
resolution were accounted for. T-conorms generalise union
of sets where a t-conorm T follows the inequality

Y(v,7) € [0,1*,T(v,7) > max(v,1) (7)

T-conorms are therefore disjunctive, with ‘max’ being the
smallest possible function. Using a t-conorm (in our case the
maximum of the range of measurements) ensures that a
pessimistic standpoint is always taken when classifying an
object, i.e. we always accept the most mine-like measure-
ment. This should ensure that fewer real mines are
disregarded as clutter objects.

I(q)
#(q)

100 140 210250
q

XAq)
IKq)

20 45 55 60 40 45 60 65
q q

Fig. 4 The four membership functions used to define 0" (6))

All dimensions are in centimetres

51



5.3 Function w;’igh ()

This function will consider the elongation o of the object’s
highlight region. Simply, objects from the cylinder class
would be expected to have a high « value while objects from
the other classes would not. The function can be seen in
Fig. 5, where the crossover parameter f§ was set at 2.25 after
considering the training data used to define w/““*(H?).

")

J={sph, cone} j={cyl}

B «

Fig.5 Form w/}-'igh(oc) for j = {cyl} and j = {sph, cone}

5.4 Membership function results

The class membership functions were determined for 50
different objects. These data were taken from the GESMA
and DRDC-Atlantic data sets. There was no overlap
between the testing data and training data used to define
the fuzzy functions. The testing data included 10 cylindrical
objects, 10 spherical objects, 10 truncated cone objects and
20 clutter objects. All the tested images are from real
Sidescan data. Examples of the different classes can be seen
in Fig. 6. As can be seen, clutter can often appear very mine-
like in sidescan imagery.

The final class membership functions for the 30 mine-like
objects can be seen in Table 2.

As Table 2 shows, the cylinder and sphere objects are
well classified. The truncated cone objects are not so clearly
defined, with the sphere and cone classes often offering non-
zero membership functions. However, these classes often
provide similar shadow regions under certain sonar
conditions. It should also be noted that the cylinder
class has zero membership for all the cone and sphere
images. The clutter image results are not shown but were
dependent on the visual similarity to the considered
classes. The very irregular clutter objects provided low
membership functions for all three classes. For those
that closely represent a specific object class (see Fig. 6),
only the relevant membership function was non-zero.

Table 2: Final membership functions for all three
considered object classes

Obj. number Obj. class wfind! wfinal wfnal

1 cyl 1 0 0

2 cyl 0.84 0 0

3 cyl 1 0 0

4 cyl 1 0 0

5 cyl 0.75 0 0

6 cyl 0.1 0 0

7 cyl 0.35 0 0

8 cyl 0.08 0 0

9 cyl 1 0 0
10 cyl 1 0 1
11 cone 0 0.13 0.16
12 cone 0 0 0.17
13 cone 0 1 1
14 cone 0 0 1
15 cone 0 1 1
16 cone 0 0.30 0.17
17 cone 0 1 1
18 cone 0 0 1
19 cone 0 1 1
20 cone 0 1 1
21 sphere 0 0.34 0
22 sphere 0 1 0
23 sphere 0 1 0.0
24 sphere 0 0.66 0.01
25 sphere 0 1 0
26 sphere 0 0.22 0
27 sphere 0 0.17 0
28 sphere 0 1 0
29 sphere 0 0.34 0
30 sphere 0 0.34 0

Results are shown for the cylinder, sphere and truncated-cone objects

A classification decision could be made on these member-
ship functions by simply imposing a threshold. This is a
‘hard’ technique. The objects are classified simply as mine
or not-mine. A more subtle approach is to allocate a
probability or a ‘belief” to each of the classes. This is
particularly desirable for sidescan surveys where the same

Fig. 6 Examples of objects used for testing

a Cylinder objects

b Sphere objects

¢ Truncated cone objects
d Clutter objects
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object is often viewed multiple times offering the opportu-
nity for multi-view analysis to be carried out on the object.
This can be done by considering Dempster—Shafer (D—S)
information theory.

6 Using Dempster-Shafer information theory

Data fusion collates information from different sources
considering the same scene in an attempt to provide a
more complete description. The most common numerical
techniques used are Bayesian probability theory [29, 30],
fuzzy systems [28] and Dempster—Shafer (D—S) theory [31,
32]. Fuzzy systems contain a wealth of possible fusion
operators. However, the choice of operator is case
dependent and many of the operators are non-associative,
meaning the order in which the information is fused has an
impact on the final result. Bayesian and Dempster—Shafer
models have both been successfully applied but D—S theory
provides some features which Bayesian theory cannot [33].
One of the most significant features is that D—S theory can
consider union of classes. This feature is used to improve
the separability of the cone and sphere classes. Results from
the D-S classifier are presented in both a mono-view and
multi-view context.

6.1 Dempster—Shafer model

Dempster—Shafer (D-S) theory allows the representation
of imprecision and uncertainty through the definition of
two functions: plausibility (Pls) and belief (Bel). These
are derived from a mass function m which is analogous
to the well known probability function. Mass functions
are defined on the power set of the space of discernment D.
For classification purposes, D may be the set of
possible classes. Specific to D-S theory, D may also
contain union of classes [33]. Denoting 2P as the set of
subsets of D, mass function m(A) for every element A of 2°
is defined such that

m(0) = 0, Zm(A) =1 (8)

Given a set of mass functions, the belief (Bel) and
plausibility (PIs) can be determined by:

Bel()) =0
Bel(A) = > " m(B),YA C D,A # 0 ©)
BCA
Pls(0) =0
Pis(A)= Y m(B),YA C D,A #0 (10)
BNA#()

These functions have the following properties:

Bel(D) =1

Pls(D) =1

Bel(A) < Pls(A),YA C D

Pls(A) = 1 — Bel(A€),YA C D (11)

where A€ is the complement of A. Different techniques have
been implemented to make a decision based on the belief
(Bel) and plausibility (Pls) values [33]. The most common,
and the one used here, is the maximum belief over all the
singleton classes (thus ensuring that the final classification
result is not a union of classes).

For the mine classification model presented here, the
allowed Dempster—Shafer classes were A = {clutter, cyl,
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sph, cone, sph U cone}. The nonsingleton class A = sph U
cone has been defined to remove the degeneracy between the
sphere and cone classes on the truncated cone membership
results seen in Table 2. It can be seen that the cone and
sphere membership functions are only identical when

inal ] .
ol _ w’:';',f = 1. The mass functions are therefore defined:

final
cyl
m(cyl) = T}
ﬁnal
m(cone) = ;"e
ol
m(sph U cone) = (Jph#)
ofs! ~ ol
m(sph) = Z
F(x,t
m(clutter) = (;’ ) (12)
0.1
m(D) = A (13)
where x = max{w’j:'la l,wgf',fl,wgg,ﬁ , tis a threshold par-

ameter and Zis a normalising factor. Mass function m(D) has
simply been allocated a small, non-zero value and represents
the ignorance between classes. G(-) is defined as

G, wliit) =€ if ol = ol =1

sph 7 sph
= 0 otherwise (14)

Constant £ was arbitrarily set to % to ensure that m(cone) >
m(sph) when w’;Z';l = @l _ 1.

The form of F(x,f) can be seen in Fig. 7. This form
ensures that when x > 7, at least one of the object class
belief functions is greater than the clutter belief, while for
x > t the clutter has the highest belief function.

F(x, t)

Fig. 7 Form of F(x, t) used in the D—S mass function for clutter
Form used depends on threshold ¢ and x

6.2 Mono-view classification results

The tested data were classified using the D—S classifier. The
results can be seen in Fig. 8 for a range of threshold ¢ values.
The graph contains two plots. The first considers the
standard mine/not-mine classification, while the second
considers the classification as correct only if the correct
object class has been identified.

A threshold value r = 0.18 correctly classifies over 85%
of the mines by identifying their specific object class.
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1.0

— non-specific classification
------- specific classification

percent of mines correctly classified

0.4+t

0.3

0.2 0.4 0.6 0.8 1.0
percent of clutter wrongly classified

Fig. 8 Results for Dempster—Shafer classification model
Results obtained on 30 mine objects and 20 not-mine clutter objects

The same threshold correctly identifies over 50% of the
clutter objects as false alarms where it is important to note
that some of the clutter objects appear very ‘mine-like’ in
the mono-view images. This result would allow the number
of false alarms detected using any detection model to be
dramatically reduced. The same ¢ value allows ~95% of the
mines to be correctly labelled as simply mine. However,
obtaining a specific shape classification (as well as the
parameter information) allows the possibility of identifying
the mine type and so perhaps affecting how the specific
threat is dealt with. Further improvements to these results
would be expected by again improving the sonar simulator
used in generating the synthetic shadows.

6.3 Multi-image classification

When the same object has been viewed from multiple
aspects, D—S theory allowed the mono-view mass functions
to be combined. Considering mass function m;, from source
k,k =1,...,n, where n is the number of sources, this rule is
expressed by

(my & my & ... &m,)(A)
_ > _B,n.B,—4 M1 (By)my(By) ...m,(B,) (15)
1= 5n.n8,—0mi (B)my(By) ... m,(B,)

for all nonempty subsets A of D. The summation on the
bottom line of (15) is often referred to as the conflict and is

<1. A value of 1 means that the evidence from the sources
is completely conflicting and so cannot be fused. Once the
fused mass functions have been determined, the belief (Bel)
functions can be determined as in (11) and the multi-view
classification result obtained.

The multi-view classification model is demonstrated on
three different objects. The first is a cylindrical object,
where four views corresponding to objects 2, 3, 4 and 6 in
Table 2 have been used. The second object is a truncated
cone where the four views corresponding to objects 11, 12,
15 and 16 in Table 2 have been used. The final example
considers a spherical object where objects 21, 22, 23 and 24
have been used. The different views can be seen in Fig. 9.

Figure 9 clearly shows the effect that direction, fish height
and range can have on the appearance of the objects in
sidescan sonar imagery, again demonstrating why it is
important for these variables to be taken into consideration
when classifying the object. Tables 3—5 show the mono-
and multi-image classification results for the cylinder,
truncated cone and spherical images respectively. A value
of t = 0.18 was used throughout.

Tables 3—-5 show all three objects being correctly
classified with strong belief. Table 5 shows the fusion
model simply confirming the mono-view classification
results, offering a very high belief for the sphere class.
The cone example is a more difficult example with the
mono-image classifications offering conflicting results.
However, the fusion model provides the correct classifi-
cation result. Table 3 shows the cylinder being classified
confidently even though object 6 is actually detrimental to
the overall result (due to a low value for @/ (0.,;)). Owing
to a lack of prior information, the model currently carries
out the fusion by blindly considering all considered views as
equally important. A possible alternative offered by D-S
theory is to only consider a view if, for a hypothesis
A € D,Bel(A) > maxyicp aza Pls(A"). This is a very strict
condition called the absolute decision rule and would result
in the model only fusing views with strong mono-view
classification results. Another alternative offered by D-S
theory is to consider the conflict (see Section 6.3) when
deciding whether to consider a view. For information, the
measured conflicts while fusing the cylinder, cone and
sphere views were {0.23, 0.13,0.81}, {0.41, 0.64, 0.62} and
{0.37,0.17, 0.31}, respectively. The final addition of object
6 in the cylinder example can be clearly seen to heavily
conflict with the other views. D—S theory would also allow
classification ignorance (certain sonar conditions can

Fig. 9 Different views of three objects

a Four different views of the same cylinder
b Four different views of the same truncated cone
¢ Four different views of the same spherical object

These views are taken from different directions, fish heights and slant ranges
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Table 3: Belief functions for the different classes for both individual images and overall fused result for cylindrical object

Mono-image belief Fused belief

Object Cylinder Sphere Cone Clutter Objects fused Cylinder Sphere Cone Clutter
2 0.707 0.000 0.000 0.208 2 0.707 0.000 0.0000 0.208
3 0.833 0.000 0.000 0.083 2,3 0.936 0.000 0.000 0.054
4 0.833 0.000 0.000 0.083 2,3,4 0.988 0.000 0.000 0.011
6 0.058 0.000 0.000 0.820 2,34,6 0.939 0.000 0.000 0.60

Fused belief functions change as a new image is included in multi-view classification

Table 4: Belief functions for the different classes for both individual images and overall fused result for truncated cone

object

Mono-image belief Fused belief

Object Cylinder Sphere Cone Clutter Objects fused Cylinder Sphere Cone Clutter
1 0.000 0.213 0.246 0.385 11 0.000 0.213 0.246 0.385
12 0.000 0.000 0.359 0.432 11,12 0.000 0.076 0.334 0.535
15 0.000 0.303 0.454 0.045 11,12, 15 0.000 0.152 0.675 0.142
16 0.000 0.358 0.199 0.323 11,12, 15, 16 0.000 0.0223 0.592 0.174

Fused belief functions changes as a new image is included in multi-view classification

Table 5: Belief functions for the different classes for both individual images and overall fused result for spherical object

Mono-image belief Fused belief

Object Cylinder Sphere Cone Clutter Objects fused Cylinder Sphere Cone Clutter
21 0.000 0.465 0.000 0.400 21 0.000 0.465 0.000 0.400
22 0.000 0.833 0.000 0.083 21,22 0.000 0.858 0.000 0.124
23 0.000 0.832 0.001 0.083 21,22, 23 0.000 0.971 0.001 0.027
24 0.000 0.597 0.012 0.300 21, 22,23, 24 0.000 0.983 0.001 0.016

Fused belief functions changes as a new image is included in multi-view classification

provide images which are unsuitable for classification) to be
modelled through the use of the dual hypothesis mass
functions. Future research will focus on these points to
create a more flexible fusion model.

7 Conclusions

This paper has presented a novel classification model which
extends the standard mine/not-mine classification pro-
cedure to include shape and parameter information on the
object. A Dempster—Shafer based model was implemented
which allowed a classification to be obtained from either
mono or multiple views of the object. This is important for
sidescan surveys, which generally use ‘lawnmower trajec-
tories’ and so often contain multiple views of the same
object. The Dempster—Shafer mass functions were deter-
mined by using an iterative sonar simulator process to
generate synthetic shadow regions from considered object
classes. This allowed information such as the object’s
parameters to be included in the classification process. The
approach also easily accommodates the inclusion of new
object classes and allows the classification process to
become mission-specific. Results were presented on real
mine and clutter images. These results showed how the
proposed approach could remove a significant amount of the
false alarms picked up by any mine detection model while
classifying a large percentage of the real mine objects.
Identifying the mine’s shape and size would allow the
possibility of classifying the mine type, leading to an
improved assessment of how best to neutralise the threat.
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