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This paper deals with automatic target tracking in video and sonar subsea se-
quences, an essential capability for automating tasks currently performed by remotely
operated vehicles under pilot control. We describe two trackers, one for video se-
quences, the other for sector scan sonar sequences. No assumptions are made about
the images, scene, or motion observed. To illustrate applications, we report results
of our systems for 3-D structure reconstruction and panoramic mosaic building from
video sequences and describe in some detail our path planning and obstacle avoidance
system using sonar sequences.c© 2000 Academic Press
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1. INTRODUCTION

1.1. The Need for Reliable Tracking Systems

The recent renaissance of interest in autonomous underwater vehicles (AUVs) for sub-
sea applications makes the development of reliable navigation and control technologies
crucial. Image sequences, both sonar and video, are rich sources of data for many tasks;
for instance, images can supply visual servoing loops with positional and motion measure-
ments or provide information about the seafloor profile in surveying mission or about the
structure and state of humanmade installations in maintenance missions. The introduction
of autonomous, reliable visual servoing modules would also take away the burden of con-
stant manual control from pilots of remotely operated vehicles (ROVs), allowing them to
concentrate on the target task.

1.2. Video and Sonar Tracking as an Image Processing Problem

Tracking is an essential requirement for most subsea tasks based on image sequences,
including following pipes, keeping station in front of targets in predefined orientations,
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and building panoramic mosaics of benthic objects, industrial installations, or the seafloor.
The software implementing any such task relies ultimately on tracking the motion of some
image elements, or targets.

In this paper,target tracking means estimating the motion of one or more image regions
through the frames of a sequence.Notice that the problem is cast from the viewpoint of
computer vision for both video and sonar sequences, traditionally two separate domains in
subsea applications. Of course, the exact definition of “target” depends, among other things,
on the image type (e.g., video or sonar) and the task for which tracking is performed (e.g.,
servoing, image stabilization).

1.3. Tracking as a Computer Vision Technique

Feature tracking is apedigreeproblem in computer vision [39, 44, 45, 54] and its literature
is vast. Not so for sonar tracking (as an image processing problem), mainly due to limitations
of sensor technology which have been overcome only recently. These are discussed in the
next section.

Tracking has been approached in two basic image processing frameworks. One is to track
image features, that is, image regions with special properties making them clearly identifi-
able and efficiently detectable. Classic examples of features in computer vision are corners
[43], lines [39], and deformable contours [5]. Such features are detected automatically in
each frame and tracked through a sequence for as long as possible. The resulting motion
field issparse: all motion information computed refers only to the feature regions. Finding
the same feature in subsequent frames is a problem similar to stereo matching [10, 12, 22,
31, 54]. Sequence analysis can exploit also temporal continuity; i.e., the features’ position
and appearance change slowly through most of a sequence. Kalman filtering has proven a
popular technique for this purpose [30, 48, 40].

The alternative framework isoptical flow methods, a class of differential techniques
estimating image motion at each pixel [2, 6, 34, 42, 49, 50]. The advantage is that adense
motion field is produced and, in principle, can be used for segmentation, tracking, and 3-D
motion analysis. In practice, the main disadvantage with underwater sequences seems to
be the differential nature of the methods, which requires a high frame rate and negligible
changes between consecutive frames. This is clearly not the case with sonar sequences, and
only very good water conditions seem to allow the computation of usable optical flows from
video sequences. Moreover, optical flow methods can be computationally demanding. For
these reasons, we have turned to feature-based techniques, which allow the use of stereo
matching techniques to cope with finite and large disparities, in combination with Kalman
filtering to take advantage of temporal information.

The size of the technical literature on image-based video tracking is not matched by
that of image-based sonar tracking, mostly because of sensing limitations. Until recently,
most subsea obstacle avoidance systems have used low-resolution or low-frame-rate sonar,
yielding inaccurate estimates of obstacle position and motion. These systems were suitable
for reactive obstacle avoidance(or reflex behavior), but not for tracking or path planning
in real, changing environments.

Much work was done on segmenting side-scan sonar images, but not so much on forward-
looking sonar images, and then again on still images [33]. Separating static from moving
image regions using FFT techniques is one of the few examples of forward-looking sonar
sequence analysis [7, 27]. But the noisy nature of forward-looking sonar images makes it
very difficult to compute meaningful segmentations from a single return.
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The advent of multibeam sonars, yielding high resolution and good frame rates, has
made it feasible to exploit temporal features in sonar image segmentation and, in general,
has opened the door to a whole new range of applications [7, 21, 26, 51, 52] including
computing detailed descriptions of time-changing environments [9, 36].

1.4. A Brief Overview of Subsea Sonars

A brief description of the available types of sonar sensors and why forward-looking is
the best option for path planning seems now in order.

Sonar(sound navigation and ranging) is an acoustic sensor used for sensing the environ-
ment. Sonar sensors can be divided into two main categories,passiveandactive. The passive
sonar is a very sophisticated apparatus that senses acoustic energy in the environment. Pas-
sive sonars are mainly used in military applications,stealthbeing a major constraint for
this type of operation. Active sonars are used in a broader range of applications such as
charting or surveying for the offshore oil industry, and we shall concentrate on them. The
active sonar emits pulses of acoustic energy, which will be reflected back to the sonar as
they collide with surfaces within the sonar’s range.

In water, acoustic sensors have proved by far the more popular choice. Electromagnetic
waves attenuate far more rapidly and their working range is greatly reduced. Although
cameras and lasers are extensively used for close-range inspection, their working range is
typically well below 5 m and their performance is seriously affected by variable factors like
water turbidity and marine snow.

For obstacle avoidance and path planning, one of the main applications for our work, the
vehicle must be protected from the risk of collisions, and obstacles detected at safe range.
The use of short-range sensors like cameras is therefore limited, whereas sonars offer ranges
up to 200 m and are clearly the best option.

Why is theforward-looking multibeam sonarcurrently the best sensor for sonar-based
tracking and allied applications? To answer, we must review briefly the most common types
of active sonars available.

1.4.1. Echo Sounder Sonar Transponder

This is the most common and widely available commercial sonar. It emits a pulse at a
given frequency; the pulse is reflected back from a surface to the receiver unit of the sonar.
The distance between surface and sonar can be estimated by measuring the time interval
between emission and reception of the pulse. Normally, these sonars are used in boats or
UVs to estimate the vehicle’s altitude from the seabed.

1.4.2. Side-Scan Sonar

This acoustic imaging device is towed by a vessel, typically to provide wide-area images
of the seabed for surveying purposes. The images are generated in sequence; acoustic en-
ergy is transmitted to the side of the sonar, and the sound reflected back is used to create the
image. For a detailed description the reader is referred to [3]. Side-scan sonars have been
used as tools for mapping in many commercial applications. Slant-range and geometric
corrections of images can be used to work out the position of a vehicle, but this requires
too many constraints, including the assumption of a flat seabed.
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1.4.3. Bathymetric Sonar

Also known as themultibeam echo sounder, this sonar is similar in operation to the echo
sounder sonar transponder, except that it uses an array of hydrophones (as opposed to a
single one), which allows for multiple beams. The result is a profile (cross-section) view of
the seabed. This type of sonar is commonly used to build maps.

1.4.4. Forward-Looking Mechanically Scanned Sonar

This active sonar is used for a number of diverse applications, such as obstacle avoidance,
midwater mine detection, and surveillance. The sonar consists of a single hydrophone which
is mechanically scanned along the horizontal axis, sweeping a so-calledsector. The returns
are then used to create an image. Most systems provide the user with the option of choosing
the size of the sector to scan and with some degree of control on the resolution. In most
cases higher resolution results in a slower refresh rate. Typical ranges are up to 200 m, but
this can be altered by the user. Again a longer range will also result in a slower refresh
rate. Forward-looking sonars have been used for many years by ROV pilots for remotely
controlled navigation, obstacle avoidance, and localization around known structures.

The major advantage of this type of sonar is its capability of detecting objects or seabed
features, such as protruding rocks, at large distances. These can be observed in subsequent
scans and tracked, providing the UV is moving at a slow speed. Another advantage is its
price, much less than that of its more advanced cousins, described below.

1.4.5. Forward-Looking Multibeam Sonar

This type of sonar uses a fixed array of hydrophones, scanned electronically, which allows
much faster updates of sectors (e.g., the Seabat 6012 can update a sector up to 30 times a
second). In all other accounts, this sonar is similar to a mechanically scanned sonar. These
sonars are more expensive than mechanical systems; nevertheless their popularity in the
underwater community has been growing. Automatic methods for obstacle avoidance [21],
motion estimation [9], and image recognition [11] using forward-looking multibeam sonar
images have already appeared.

1.4.6. 3-D Acoustic Cameras

This type of sensor has been made available recently in the shape of the Echo-Scope 1600
[19]. This sensor allows 3-D data visualization as it uses a 2-D array of hydrophones. The
cost of the sensor (the latest figure ofL- 180,000 is almost three times the cost of a multibeam,
forward-looking sonar), its weight (40 kg in air), and its size make it still prohibitive for
several applications, especially those involving AUVs.

1.4.7 . Which Sonar for Tracking and Path Planning?

In conclusion, forward-looking sonars are the only sensors satisfying two main require-
ments for tracking and path planning: they can scan an areain front of the vehicle and
at asufficiently high frame rateto yield large overlaps between consecutive frames. This
makes it possible to track targets using image processing techniques. Instead, side-scan and
bathymetric sonars build maps of the seafloorunderthe vehicle as they are dragged along;
in addition, their images need corrections requiring position information from independent
sensors.
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1.5. About This Paper: Contributions and Structure

The main contributions of this work are the development of

• a robust, real-time video tracker offering very good reliability with subsea imagery in
a veriety of environments;
• a sonar tracker locating and tracking obstacles reliably in real, multibeam sonar se-

quences, thus taking full advantage of dense spatial and temporal information, fast enough
to support real-time ROV or AUV operations, and successfully integrated in a fully working
path planning and obstacle avoidance system.

This paper is organized in three parts. The first (Section 2) describes the theory behind our
real-time video tracker and reports some experimental results. The second (Section 3) does
the same for our sonar tracker. The third (Section 4) sketches three applications developed
in our laboratory: reconstructing 3-D structures and building panoramic mosaics from video
sequences, and path planning and obstacle avoidance using sonar sequences, the latter with
some more details on its importance in AUV operations. A summary of our work and a
brief account of our future plans close the paper.

2. ROBUST VIDEO TRACKING

2.1. Introduction

Robust trackingmeans detecting automatically unreliable matches, oroutliers, over an
image sequence (see [32] for a survey of robust methods in computer vision). Recent exam-
ples of robust video trackers include [47], which identifies tracking outliers while estimating
the fundamental matrix, and [46], which adopts a RANSAC approach to eliminating out-
liers for estimating the trifocal tensor. Such approaches increase the computational cost of
tracking significantly.

This section presents a robust tracker based on an efficient outlier rejection scheme
suitable for subsea video sequences. The basis is the Shi–Tomasi–Kanade tracker [29,
41, 43], a feature tracker based on SSD matching and assuming affine frame-to-frame
warping. The system tracks small image regions and classifies them asgood (reliable)
or bad (unreliable) according to the residual of the match between the associated image
regions in the first and current frames. Our work extends the Shi–Tomasi–Kanade tracker
in several ways: First, we have introduced anautomaticscheme for rejecting bad features,
thus making the process fully automatic. We employ a simple, efficient, model-free outlier
rejection rule, called X84, and prove that its assumptions are satisfied in the feature tracking
scenario. Second, we have developed a system running for indefinite lengths of time. Third,
our tracker runs in real time on nondedicated hardware.1

2.2. How the Video Tracker Works

Consider an image sequenceI (x, t), with x= [u, v]T the coordinates of an image point. If
the frame rate is sufficiently high, we can assume that intensity values within small regions
remain practically unchanged after displacement,

I (x, t) = I (δ(x), t + τ ), (1)

1 Code for a basic version of our robust tracker is available at ftp://taras.dimi.uniud.it/pub/sources/rtrack.tar.gz.
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whereδ(·) is themotion field, specifying thewarpingthat is applied to image points. If we
choose anaffinemotion field

δ(x) = Dx+ d,

where

D =
[

dxx dxy

dyx dyy

]

is a deformation matrix andd is the translation of the image windows center, then a point
x in the first imageI moves to a pointAx+ d in the second imageJ,

J(Ax+ D) = I (x),

whereA= 1+ d and1 is the 2× 2 identity matrix.
We estimate the motion parameters,D andd, by minimizing the residual

ε =
∑
W

[ I (Ax+ d, t + τ )− I (x, t)]2. (2)

By plugging the first-order Taylor expansion ofI (Ax+ d, t+τ ) into (2), and imposing that
the derivatives with respect toD andd are zero, we obtain the linear system

Tz= a, (3)

in whichz= [d11 d12 d21 d22 d1 d2]T contains the unknown motion parameters, and

a= −τ
∑
W

It [uIu u Iv v Iu v Iv Iu Iv]
T,

T =
∑
W

[
U V

VT G

]
,

with

U =


u2I 2

u u2Iu Iv uv I 2
u uv Iu Iv

u2Iu Iv u2I 2
v uv Iu Iv uv I 2

v

uv I 2
u uv Iu Iv v2I 2

u v2Iu Iv

uv Iu Iv uv I 2
v v2Iu Iv v2I 2

v

 ,

VT =
[

uI 2
u u Iu Iv v2I 2

u v Iu Iv

uIu Iv uI 2
v v Iu Iv v I 2

v

]
.

Of course, the above equation is satisfied only approximately because of the approximations
introduced (among other reasons). A better estimate ofz can be determined from Eq. (3),
using a Newton–Raphson iterative scheme.

The quality of such estimates depends critically on several factors, including the size
of the feature window, the amount of texture in the image, and the amount of camera
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motion. One generally favors small windows as they give better localization and are less
likely to straddle depth discontinuities; however, they make estimates of the deformation
matrix less reliable. Under the assumption of a high frame rate, image motion and feature
deformation between frames are minimal over limited time intervals. For these reasons, a
pure translationalmodel, that is,

δ(x) = x+ d,

is adequate as long as the tracker runs continuously and reinitializes the feature sets as soon
as enough features are lost (Section 2.2.3).

The tracker’s task now is to computed for a number of selected points in each pair of
successive frames in the image sequence.

In this translational case, the residual takes the form

ε =
∑
W

[ I (x+ d, t + τ )− I (x, t)]2. (4)

By plugging the first-order Taylor expansion ofI (x+ d, t + τ ) into (4) and imposing that
the derivatives with respect tod are zero, we obtain the linear system

Gd = e, (5)

where

G =
∑
W

[
I 2
u Iu Iv

Iu Iv I 2
v

]
, e= −τ

∑
W

It [ Iu Iv]
T,

with [ Iu Iv]=∇ I = [∂ I /∂u ∂ I /∂v] and It = ∂ I /∂t . Given a pair of successive frames, the
solution of (5), that is,̂d=G−1e, is used to predict a new (registered) frame. The procedure is
iterated according to a Newton–Raphson scheme until the displacement estimates converge.

Our tracker incorporates anormalizedSSD matcher for residual computation. This lim-
its the effects of intensity changes between frames, extremely frequent in underwater se-
quences, by subtracting the average gray level (µJ, µI ) and dividing by the standard devi-
ation (σJ, σI ) in each of the two regions considered,

ε =
∑
W

[
J(Ax+ d)− µJ

σJ
− I (x)− µI

σI

]2

, (6)

whereJ(·)= I (·, t + 1), I (·)= I (·, t).
A more elaborate normalization is described in [8]; [17] reports a modification of the

Shi–Tomasi–Kanade tracker based on explicit photometric models.

2.2.1. What Is a Feature?

The question that now arises iswhat constitutes a feature?Researchers have traditionally
proposed to track corners, or windows with high spatial frequency content, or regions with
a sufficiently high mix of second-order derivatives, to overcome difficulties such as the
aperture problem. Here a less intuitive, but more principled, kind of feature is used;a
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good feature is one that can be tracked well, making the extraction criterion optimal by
construction.

In this framework, a feature can be tracked reliably if a numerically stable solution to
Eq. (5) can be found, which requires thatG be well conditioned and that its entries be
well above the noise level. In practice, since the larger eigenvalue is bounded by the max-
imum allowable pixel value, the requirement is that the smaller eigenvalue be sufficiently
large. Callingλ1 and λ2 the eigenvalues ofG, we accept the corresponding feature if
min(λ1, λ2)>λ, whereλ was a user-defined threshold in the work of Shiet al. [41]. This
constitutes an automatic procedure for identifying reliable regions to track.

2.2.2. Feature Monitoring and Robust Tracking

To summarize the tracker’s algorithm, features are detected in an initial frame. In all
subsequent frames (within a given time interval, or until enough features are dropped from
the initial set), and for each feature, the tracker solves a linear, overconstrained system
to determine the current position of the feature. The next problem is how to find features
failing to comply with the motion model (feature monitoring).

To monitor the quality of the features, the tracker checks the residuals between the first
(after reinitialization of the feature set) and the current frame: high residuals indicate features
which violate the motion model and must be rejected. Such bad features are caused by
occlusions, perspective distortions, and strong intensity changes (e.g., specular reflections).
However, after enough time has elapsed without reinitialization of the feature set, most
features eventually undergo significant rotation, scaling or shearing and are discarded. A
tracker running continuously must reinitialize before so many features are lost that the task
supported (e.g., visual servoing, structure reconstruction) cannot be performed any longer
(Section 2.2.3).

We have developed a method for selecting a robust rejection thresholdautomatically
within sequences of limited length (i.e., where only a small subset of good features could be
erroneously discarded). We begin by establishing which distribution is to be expected for the
residuals when good features, i.e., almost identical regions, are compared. We assume that
the intensityI (δ(x), t) of each pixel in the current-frame region is equal to the intensity of the
corresponding pixel in the first frameI (x, 0) plus some Gaussian noisen' η(0, 1). Hence

I (δ(x), t)− I (x, 0)' η(0, 1).

Since the square of a Gaussian random variable has a chi-square distribution, we obtain

[ I (δ(x), t)− I (x, 0)]2 ' χ2(1).

The sum ofn chi-square random variables with one degree of freedom is distributed as
a chi-square withn degrees of freedom (as it is easy to see by considering the moment-
generating functions). Therefore, the residual computed according to (4) over anN× N
windowW is distributed as a chi-square withN2 degrees of freedom:

ε =
∑
W

[ I (δ(x), t)− I (x, 0)]2 ' χ2(N2). (7)

As the number of degrees of freedom increases, the chi-square distribution approximates a
Gaussian, which is in fact used to approximate the chi-square wheneverN> 30. Therefore,
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since the windowW associated to each feature is at least 7× 7, we can safely assume a
Gaussian distribution of the residual for the good features:

ε ' η(N2, 2N2).

When the two regions over which we compute the residual are bad features (i.e., they
are not warped by an affine transformation), the residual is not a sample from the normal
distribution of good features, but an outlier. Hence,the detection of bad features reduces to
a problem of outlier detection, which is equivalent to estimating the mean and the variance
of the corrupted Gaussian distribution. To do this, we employ a simple but effective model-
free rejection rule, X84 [18], which achieves robustness by employing median and median
deviation instead of the usual mean and standard deviation. This rule prescribes to reject
values which are more thank median absolute deviations (MADs) away from the median:

MAD = med
i

{∣∣∣εi −med
j
ε j

∣∣∣}. (8)

In our case,εi are the tracking residuals. A value ofk= 5.2 is adequate in practice, as it
corresponds to about 3.5 standard deviations, and the range [µ− 3.5σ,µ+ 3.5σ ] contains
more than the 99.9% of a Gaussian distribution [18]. The rejection rule X84 has a breakdown
point of 50%: any majority of the data can overrule any minority.

2.2.3. Implementation Aspects

The theory above has been implemented in a tracker running continuously and capable
of supporting real-time applications requiring tracked data several times per second. In
our implementation, a set of features is extracted and tracked until a sufficient number are
visible. Feature extraction is performed only in the first frame. As outlined in the previous
section, the tracker then looks for the corresponding feature within a window in the second
image centered at the feature position in the first image. The size of the tracking window for
t = 2 is the same as that for the extraction phase. Subsequently, the window size is adjusted
in accord with the history of feature displacements in the image sequence.

Robustness monitoring (i.e., discarding unreliable features) is performed periodically,
whenever it is deemed necessary by the overlaying applications, or when reinitialization is
performed. When the number of tracked features drops below a threshold, feature extrac-
tion is triggered and the feature set reinitialized. The old features are carried over to the
new batch and newly extracted features added. The period of the robustness checks, the
threshold triggering feature reinitialization, and the reinitialization strategy itself depend
on the particular application incorporating the tracker. For instance, the feature set could
be reinitialized when the tracked features are less than the minimum number of features
needed for reconstructing 3-D structure, or the reextraction of features could be focused
in new areas appearing in the image due to image motion. It is important to note that one
tries to limit the number of times that a robustness check is performed to those absolutely
necessary for the overlaying applications, as the outlier rejection operation is at least an
order of magnitude more expensive than the tracking operation.

Our C++ implementation runs at 6 to 10 frames per second on a Sun Ultra-10 under
Solaris, with no special or dedicated hardware. We have measured a speedup by approxi-
mately a factor of 2 on a high-performance Alpha card. The full feature extraction phase
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takes approximately 0.1 s to extract about 35 features from a 250× 370 image on the
Ultra-10. Notice that full feature extraction is necessaryonly to reinitialize the feature set:
subsequent tracking is a local and inexpensive operation.

2.2.4. Experimental Results

We report briefly two examples illustrating video tracking.
The Hyball sequence (Fig. 1) was acquired by a Hydrovision Hyball ROV swimming in

our laboratory tank along a metal structure. The sequence consists of 127 gray-level frames,
each of 250× 370 pixels. The figure shows all the features tracked (left column) and those

FIG. 1. Robust feature tracking in the Hyball sequence. The rows show frames 17, 30, and 45, with all the
features extracted (left column) and those preserved after robust monitoring (right column). The bottom figure
shows the tracks of the features present in the last batch.
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FIG. 2. First and last frame of the Smallrock sequence (white windows in the last frame indicate features
rejected as unreliable) and plot of residual magnitude against frame number.

preserved by the robust monitoring (right column), as well as the tracks of the features
present in the last frame.

The Smallrock sequence (Fig. 2) consist of 46 frames, each of 240× 160 pixels. It
was acquired by an ROV operated by the Institute of Marine Biology, Crete, in shallow
Mediterranean waters near Psira Island. The figure shows the first and last frames of the
sequence, the latter with tracks superimposed. The white squares indicate features dropped
as unreliable. Figure 2 also plots the residuals of all features against the frame number.
The horizontal line indicates the threshold set automatically by X84. Features associated to
residuals higher than the threshold are rejected as unreliable.2

In both examples, the tracker adopts the translational model. This has proven adequate,
in all our experiments, to support applications running continuously (see discussion in
Section 2.2).

To evaluate performance quantitatively in the context of an application, we used the
features tracked to compute the fundamental matrix [49] between the first and the last
frame of the two sequences. The fundamental matrix was estimated using Zhang’s nonlinear

2 2MPEG sequences of these and other tests can be found on the Internet at our laboratory’s Web site,
http://www.cee.hw.ac.uk/Oceans.
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TABLE 1

1 RMS Distances

Hyball Smallrock

All 0.23 0.58
X84 0.18 0.53

Note.RMS distance of points from epipolar lines.

method [54]. To assess the goodness of the estimated epipolar geometry, we computed the
RMS distance of the tracked points from the corresponding epipolar lines. If the epipolar
geometry is estimated accurately, indicating accurate tracking, all points should lie on
epipolar lines. Table 1 reports, for comparison, results with and without the robust X84
rejection. With both sequences, the robust tracker brings a decrease in the RMS distance,
suggesting that features corrupting the estimation have been dropped (this is the prime
purpose of robust tracking). This behavior was confirmed in a number of similar tests.

3. SONAR TRACKING

3.1. Introduction

We adopt a feature-based scheme for tracking, so that the first element becomessegmenta-
tion, that is, identifying the features to be tracked in each frame, or more precisely,identifying
regions of high backscatterwhich we will refer to asobjects.

Segmenting sonar images reliably can be very time consuming. For this reason, we restrict
segmentation toareas of interestin the image, namely:

• where a basic, fast segmentation algorithm indicates the presence of a new object;
• where a static object was detected in past frames;
• where a moving object is expected to be when the next frame is acquired.

Our segmentatin algorithm was designed for real-time processing (in our case, 3 frames per
second) and for accuracies suitable for path planning purposes. The algorithm is organized
as follows.

• First-layer segmentation:noise smoothing, detection of new objects, location of areas
of interest (where new objects are detected and where existing objects, static or tracked, are
expected to be found).
• Second-layer segmentation:segmentation within the areas of interest.

3.2. First-Layer Segmentation

A common segmentation procedure for sonar images consists of median filtering followed
by thresholding [7]. Filtering for noise smoothing is an absolute necessity as backscatter is
common, especially in the case of multibeam sonar images. However, it is generally time
consuming. We have tested several filtering techniques (mean, median, Gaussian) and found
that a good compromise between quality and speed was reached by the following scheme:

• Attenuate backscatter noise using a 7× 7 Gaussian filter, which performs almost as
well as a median filter but at a reduced computational cost [15].
• Threshold the image with an adaptive thresholding scheme based on the image his-

togram, which is independent of the actual signal level. The idea is to estimate the probability
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density function of the noise from the image histogram, assuming that the latter is a good
estimate of the former. Notice that the calculation of the histogram is done on theoriginal
image, not its filtered version. The estimation of the probability density function is made on
the area of the image where no objects have been detected (by the first-layer segmentation)
and where no previous objects are likely to be found.

The thresholds are derived from the histogram and only depend on a fixed false alarm
rate. To determine a threshold, we fix a target alarm rate and enter this into the cumulative
histogram (y axis), which gives us the desired threshold value (x axis). The thresholds are
also independent of the energy of the returns. This technique has proved effective even
for varying transducer gains and intensity returns. If an object is part of the image from
which the histogram has been computed and was not detected by the first-layer algorithm,
it contributes most probably to the higher part of the histogram and will be selected even
with a high false alarm rate, while most of the noise will be rejected. The noise that is not
filtered out corresponds to backscatter returns at the same levels as the objects; this kind
of noise cannot be removed without removing part of the interesting objects. We have not
run any quantitative analysis of the sensitivity of our tracker to threshold variations, but our
thresholding scheme has successfully supported tracking in real sequences (including drop
ins/outs) longer than 300 frames at 9 frames per second.

Special images composed mainly of obstacles (with high returns) or containing much
backscatter noise from the seabed can be detected easily from their high variance. The
process can then be adapted to these special cases.

Our Matlab 5.2 implementation of this technique runs in real time (as defined above) on
a Sparc Ultra-10 under Solaris and represents a working compromise between real adaptive
filtering (where the threshold value is derivedlocallywith respect to the surrounding pixels)
and fixed thresholding.

3.3. Second-Layer Segmentation

The second layer takes advantage of the tracking module described in Section 3.4, which
tracks the positions of objects from frame to frame and predicts their dynamic characteristics
and next locations. This second layer is an object-based algorithm (as opposed to the first
layer, which is pixel-based); the necessary object identification is implemented via a labeling
algorithm.

The process can be decomposed into two distinct parts, namely:

1. selection of the areas of interest in the image;
2. segmentation within these regions.

3.3.1. Selection of the Areas of Interest

A Kalman filter is associated with each object detected in the scene. Let{Oi } denote
the set of objects present in the scene at a given instant. This set can be decomposed into
two subsets,{NewOi } and{TrackOi }, representing respectively the objects just appeared
in the image and those tracked from previous frames. For each object in{NewOi }, an area
of interest is set which matches exactly the labeled object as resulting from the first-layer
segmentation. For each object in{TrackOi }, an area of interest is set which matches the
previously tracked object; the area is positioned using the prediction of the Kalman filter.
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The size of the area of interest depends on the uncertainty on position and area computed
by the Kalman filter associated with the object.

3.3.2. Segmentation

The segmentation algorithm is again based on the histogram of the original image (pre-
viously computed) to set the thresholds, but is restricted to the areas of interest. These
are filtered using a 7× 7 Gaussian filter, after which a double threshold is applied. First,
the regions to be considered are selected as those above the higher threshold. Then, the
areas connected (by 8-connectivity) to the regions selected by the higher threshold by a
continuous chain of pixels whose values are above the lower threshold are selected.

The first merit of this algorithm is that it discards noisy middle-value peaks, which
would be kept by a simple thresholding technique. This algorithm also keeps relatively
low-intensity pixels connected to high returns, which correspond to less reflective parts of
objects. An example of segmentation is shown in Fig. 3. The results shown include objects
which have been tracked for a few frames.

Our Matlab 5.2 implementation of the second-layer segmentation runs in 0.1 s on an
Ultra-5 workstation under Solaris, mainly due to the confinement of expensive processing
to small areas of interest.

FIG. 3. Example of second-layer segmentation of multibeam, high-resolution sonar images. The input image
is shown on top. Data courtesy of the Department of Ocean Engineering, Florida Atlantic University.
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3.3.3. Object Labeling

The segmented object regions are labeled using a standard labeling algorithm, and the
following features are computed for each object:

• image position;
• object area in pixels;
• object perimeter in pixels;
• second moments.

3.4. How the Sonar Tracker Works

3.4.1. Object-Based Kalman Tracking

Tracking in forward-looking sonar images has been tackled using pixel-based techniques
such as optical flow associated with tracking trees or multiple-hypothesis tracking [9, 26].
These techniques perform well when the images are not too noisy, but they often require
knowledge of the vehicle movement. To obviate this, we have based our tracker on a
combination of segmentation and feature extraction which is object-based rather than pixel-
based.

The features extracted are the basis of the tracking algorithm. The tracker has two main
functions:

• to reduce the computational cost of the segmentation;
• to extract the dynamic characteristics of the objects to be used for path planning.

Kalman filters are the core elements of our tracking scheme. As mentioned earlier, the noisy
nature of sonar images limits strongly the range of tracking techniques that can be used
successfully. For instance, the performance of pixel-based (and computationally expensive)
techniques such as correlation or optical flow can be very limited. Kalman filters, instead,

• work fast when the vector state is small;
• allow motion estimation, a useful source of information for path planning;
• attach uncertainty estimates to the components of the vector state, again a most useful

source of information for path planning;
• allow inclusion of a model of the vehicle dynamics (through extended Kalman filters);
• provide a framework for fusing data from different sensors.

As multibeam sonar frame rates are between 4 and 30 frames per second, simple, standard
Kalman filters are suitable for tracking purposes. In our filter, the state vector,X, is composed
of the image position inx and y coordinates, the areaa of the object, and their first and
second derivatives; that is,

[x ẋ ẍ y ẏ ÿ a ȧ].

The area (a) and its variation are additional features useful for characterizing a target,
even without a model of their behavior. Botha andȧ change, in typical sequences, in such
a way to allow the use of a linear model. These changes are smooth and therefore suitable
for the linear model.

Notice that a single filter integrating all the objects (and thus accounting for their cor-
relation) proves very costly, as the complexity of the Kalman filter isO(n3), n being the
dimensionality of the state vector.
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3.4.2. Data Association

Data association, a difficult problem extensively studied [1], is the component of a multi-
target tracking system matching the objects detected in the current frame with those tracked
in previous frames. Considering the constraints imposed by AUV and ROV operational
scenarios, we adopted anearest-neighbor algorithmas a working compromise between
speed and performance. The algorithm uses position and area to perform the association.
The standard nearest-neighbor method has been modified to cope with temporary merging
of two objects, as well as splitting one object into two distinct objects, a frequent occurrence
caused by the highly variable intensity of sonar returns.

The data association algorithm has the following structure:

1. Calculate the distances between all the observations and the predicted positions of the
tracked objects.

2. For each tracked object, select the observations that
• either fall within the validation gate of the Kalman filter for position inx andy (the

validation gate is defined as the uncertainty on a state of the Kalman filter, given by the
covariance matrix of the filter) or
• intersect the tracked object.

3. For all the selected observations, verify that areas are compatible.
4. Prune the selected observations as follows:
• If a single observation falls within the validation gate of the tracked object and areas

are compatible, keep it and discard the others.
• If two or more observations fall in the validation gate of the tracked object and areas

are compatible, choose the closest one in terms of position.
• If no observations falling within the validation gate have compatible area, there

might be a split or a merge. Try to aggregate observations and check resulting areas. In case
of failure, choose the closest observation.
• There is no observation at all within the validation gate of the tracked object. An

error in position estimation might have occurred. Select the observations that are intersecting
with the tracked object, if they are not the best choice for another tracked object, and repeat
the merge and split test described above.

Once data association has been applied, the tracks can be updated. Three cases are
possible:

• A new observation matches the predicted position. The Kalman filter recursion is then
applied, a new state vector is derived, and new internal values are computed.
• No new observation matches the prediction. The obstacle prediction is then updated

using the filter’s internal values. If no match is found between the observations and a given
tracked object over a predefined number of frames, the object is discarded as a false alarm.
• An observation is not associated with any tracked object. A new object is created and

its corresponding filter initialized.

3.4.3. Experimental Results

This scheme has been successfully tested with real sonar data provided by Florida Atlantic
University (FAU). The sonar sequences used were acquired by a forward-looking sonar
developed by FAU and fitted onto the front of one of their AUVs (the Ocean Explorer,
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FIG. 4. The AUV “Ocean Explorer.” Courtesy of the Department of Ocean Engineering, Florida Atlantic
University.

shown in Fig. 4). The sonar has 120 beams of width 1◦ horizontally and 30◦ vertically. The
range of the sonar was set to 40 m. Figure 5 shows the estimated trajectory of the tracked
objects with respect to the vehicle on a sequence of 300 frames at a 9 frame/s frame rate.
Images were subsampled by a factor of 2 in bothx andy to speed up segmentation, yielding
550× 400 images. The latest estimated speed vector is also displayed in the figure. The
figure shows four examples of the tracking at different stages.

As a benchmark, we compared our results against the position and heading given by
the AUV’s intertial navigation system, also made available with the sequences. As inertial
sensors cannot take currents into account, leading to considerable positional uncertainties,
we have used only the heading values for our comparison. We notice that differences between
measurements can also be due to the different refresh rates (about 1 s for the inertial sensor,
9 frames per second for our tracker). Table 2 shows our heading estimates, computed using
the best trajectory of the objects tracked, and those given by the inertial sensors for different
frames. For objects too close to the sonar head (less than 10 m), near-field effects corrupt
the results. Therefore, they were discarded.

TABLE 2

Heading Estimates Comparison

Tracker differential Inertial differential Inertial differential
Frame numbers heading heading heading (interp.)

1048–1148 73.5◦ 75◦ 73.2◦

1098–1148 36.17◦ 35.08◦ 35.08◦

Notes.Comparison of the heading estimates using the tracker and the readings of the inertial sensors on the
vehicle. The right column corresponds to the interpolated readings of the inertial sensors to take into account the
lower refresh rate of these sensors.
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FIG. 5. Example of tracking results on a sequence of 300 multibeam sonar images. Tracked trajectories are
shown as white lines, estimated velocity vectors are shown as gray arrows, and object centers are marked with
crosses.

These results indicate a good match between our estimate, based on image processing
only, and the inertial sensor measures of the vehicle. This suggests that the tracker could
be used not only within the path planning system described in Section 4.3, but also as
a secondary navigation sensor. This would offer two advantages over classical inertial
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sensors: high frame rate and accounting for currents while tracking objects on the seabed.
This application is planned for future work.

4. APPLICATIONS

This section gives a brief account of three applications of our video and sonar trackers.

4.1. Panoramic Mosaics from Video Sequences

We have developed software for buildingpanoramic mosaics[25, 35] of scenes scanned
by a video camera fitted on a vehicle. No information on the camera motion is neces-
sary; we assume that the scene is mostly planar, although experience indicates that good
results (for panoramic displaying, not measuring) are achieved also when the scene is
not entirely planar. Reliable frame-to-frame correspondences are computed by the con-
tinuous video tracker (translational motion model) and fed into a module estimating the
best plane homography aligning two consecutive frames [20, 22]. The homography is
then used to warp the current frame onto the reference one: that is, the current image
is warped to simulate an image plane coplanar with that of the reference frame. The
warped image can be aligned to the reference image without further geometric transfor-
mation. Image blending, guaranteeing seamless frame-to-frame borders, is implemented
by locally averaging the values of all the pixels mapped to the same pixel in the final
mosaic.

An example is given in Fig. 6, which shows 6 frames from a benthic, 150-frame sequence
acquired by VICTOR (Fig. 10). Notice the compensation for unknown motion (rotation
and translation of the image plane) and zoom effects, visible from the deformation in shape
and size of the image frame. The quality of this result is comparable with that of similar
techniques applied underwater [16, 34] and in air [25, 35].

Notice that, although the mosaicking algorithm assumes that the scene observed is planar,
very good results are achieved with many nonplanar targets; the one in Fig. 6 is an example.
Ultimately, quality depends on the combination of scene depth, scene–camera distance, and
focal length (assuming good visibility); our experience with video sequences acquired by
real ROVs on scientific and industrial missions suggests that our technique yields good-
quality mosaics in a large number of practical situations.

4.2. 3-D Structure from Uncalibrated Motion

A video sequence acquired by a single camera in unknown motion contains complete
information about the 3-D structure, but not the absolute size, of the scene observed
[10, 49]. The absolute size can be computed if the distance in space between two visi-
ble points is known. This means that video data acquired by ROV cameras can be used to
build 3-D models of unknown targets (e.g., hydrothermal vents, rocks, and wrecks) or to
verify the shape and size of humanmade structures (e.g., pipelines, valves, manifolds, and
similar installations).

An example of 3-D shape reconstruction from uncalibrated motion is shown in Fig. 7
[38]. The figure shows four frames from a sequence of a calibration pattern acquired in
our laboratory tank by a camera moved by hand. No calibration at all was performed.
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FIG. 6. Six frames from a benthic, 150-frame sequence acquired in the Pacific Ocean, and panoramic mosaic
of the whole sequence. Original sequence courtesy of IFREMER Brest.

The video tracker was used to compute reliable point correspondences throughout the
sequence. The motions of the image points tracked were then used to estimate the shape
(relative position) of the corresponding points in space. The reason for the small number of
3-D points reconstructed is that the feature set was never reinitialized. The accuracy of this
reconstruction, computed as the average mean error in the relative position of known points,
is approximately 2%.
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FIG. 7. Four frames from a sequence acquired in our laboratory tank by a hand-held camera (time increases
from top to bottom and left to right) and reconstructed 3-D structure of the scene points tracked throughout the
sequence.

4.3. Dynamic Obstacle Avoidance and Path Planning from Sonar Sequences

Given the importance of this application, this section explains in some detail our obstacle
avoidance and path planning system incorporating the tracker.

4.3.1. Introduction and System Overview

The goal of this research is to develop an obstacle avoidance system for the ARAMIS
(advanced ROV package for automatic mobile investigation of sediments) tool-skid. The
ARAMIS project (MAST-CT97-0083) provides a geological/scientific tool-skid which will
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be mounted on two different ROVs, VICTOR from IFREMER, France, and ROMEO from
CNR-IAN, Italy, both shown in (Fig. 10) operating at a close distance from the seabed (2 m)
at depths ranging from 50 to 2000 m. The cruising speed for both ROVs is around 1 knot and
the movements of the ROVs are measured by several on-board sensors feeding the obstacle
avoidance system with position, speed, and orientation of the vehicle in world coordinates.
The main missions of the ROVs are geological and biological surveys of the seabed and
water column, including benthic and pelagic missions which could last up to 72 h. The need
for an automated piloting system, or at least an aided piloting system, is clear.

Our ultimate aim is to detect and avoid obstacles using sonar data; therefore, segmenting
the image into regions containing the obstacles is a crucial task. It is also useful to know
how the obstacles are moving with respect to the vehicle, as this information can be exploited
by the obstacle avoidance and path planning algorithms. This information is computed by
the tracker. Once the static and dynamic characteristics of the obstacles have been estimated,
we create a model of the workspace surrounding the ROV usingconstructive solid geometry
(CSG). The choice of CSG to represent obstacles is based on the fact that classical surfaces
such as spheres, cylinders, and half-spaces are CSG primitives that can be very easily
combined, and we adopt aconvex representationfor the obstacles. In addition, working with
convex obstacles facilitates path planning and fosters convergence. The workspace model
takes into account the currently visible obstacles as well as those that have gone out of the
field of view but the positions of which are still deemed critical to the definition of a safe path.

The system we have designed (Fig. 8) is modular in nature. Modularity is seen as a key
feature for handling different needs within the same framework. Short descriptions of each
module in Fig. 8 follow.

FIG. 8. Architecture of the sonar-based, real-time path planning system.
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Segmentation. The purpose of this module is to identify regions of the image correspond-
ing to obstacles. Considering the very nature of multibeam sonar images, we discarded the
certainty grid approach [28] often used in motion planning systems based on air ultrasonic
sensors and focused on an object-oriented description of the workspace.

Feature extraction. Once the image has been segmented, potential obstacles are located
and their features (position, moments, area) are computed. These features will be used later
to discard false alarms and to track obstacle motion with respect to the vehicle.

Tracking. This module is described in detail in Section 3. It drives the segmentation,
reduces its computational cost, and enables the creation of a map in world coordinates of
the obstacles surrounding the ROV (the workspace model).

ROV dynamic modeling.We have a dynamic and kinematic model of Angus 002, a ROV
developed by our laboratory [4]. This model takes into account any type of sea current. The
model is implemented in a software package interfaced to the rest of our software within a
Matlab 5 environment.

Workspace representation.We build a workspace model from the obstacles and features
extracted from each image, called anintrafame workspace model. Combining the intraframe
models over time, we build and maintain a dynamic workspace, updated from frame to frame.
This dynamic model is the main input to the path planning algorithm.

Path planning. This module is detailed in the following sections. In essence, we use a
nonlinear programming technique based on a CSG representation of the obstacles. Each
obstacle, static or moving, is represented as a constraint on the search space (i.e., the path
cannot cross the obstacle). The algorithm minimizes the Euclidean distance to the goal
subject to such constraints. This approach advances some of our previous work [51, 52].

4.3.2. Workspace Representation

The choice of a workspace representation is intimately linked with the path planning
technique. Most path planning algorithms assume a convex representation of the obstacles
to ensure that the goal is reached [28]. When dealing with a changing environment sensed
on the fly, it is advisable to usereactive path planning, which does not need a complete
description of the workspace between the current position and the goal. The reasons for this
are:

• only partial information is available, due to the limitations of the sensor;
• new obstacles can appear in the workspace at any time;
• the accuracy of the obstacle representation changes with the distance from the vehicle.

Global path planningneeds a complete description of the workspace, as it defines the
completepath from the starting point to the goal. This is generally done throughvisibil-
ity graphs(see [28] for a review on the subject).Local path planning, instead, defines
only apartial path to the goal and needs only a possibly incomplete representation of the
workspace [23, 24, 53]. Global path planning is therefore not advisable in our case, as the
workspace is sensed while moving and therefore continuously changing and only partially
known.

On the basis of the considerations above, we use a local path planning technique which
advances some of our previous work [51, 52]. Only the immediately next step of the path is
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calculated before new sensor data is acquired. The central idea of the method is to represent
the free space as a set of inequality constraints, using CSG as detailed below, within a
nonlinear programming problem. The goal is modeled as the unique global minimum of
the objective function. The initial configuration of the vehicle is the starting point of the
nonlinear search.

Workspace representation using CSG.Planning and obstacle avoidance take place in the
configuration spaceof the vehicle, which integrates both its kinematics and its link geometry.
In this space, the vehicle is represented as a point. Each obstacle in the workspace is modeled
as a constraint. LetS be the 2-D or 3-D surface of a Euclidean spaceE representing the
obstacle, and let us denote the set of its interior points byI , the set of its boundary points
by B, and the set of its exterior points byT ; that is,

I ∪ B ∪ T = E
(9)

I ∩ B = B ∩ T = I ∩ T = ∅.

The nonnegative functiong on E is called adefining function of the obstacle S, in the
CSG sense, if

∀p ∈ I , 0< g(p) < 1,

∀p ∈ B, g(p) = 1, (10)

∀p ∈ T, g(p) > 1.

For example, the defining function of an ellipse whenE=R2 is

∀p ∈ R2, g(p) = (x/a)2+ (y/b)2, (11)

wherea andb are the half-axes of the ellipse andp is the point of coordinates (x, y) in the
plan.

An attractive point of CSG lies in the fact that complex objects can easily be constructed
from simple canonical objects using union and intersection operations. For instance,

∀p ∈ E, gI (p) = max(g1(p), g2(p), . . . , gn(p)) (12)

defines theintersection of n objectswith defining functionsg1, g2, . . . , gn respectively,
while

∀p ∈ E, gU (p) = min(g1(p), g2(p), . . . , gn(p)) (13)

defines theunionof the same objects.
However, these functions are difficult to compute in practice and are replaced by ap-

proximations. In particular, given a positive real number,m, andn objects represented as
above,

gI = (gm
1 + gm

2 + · · · + gm
n

)1/m
(14)
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and

gU = (g−m
1 + g−m

2 + · · · + g−m
n

)−1/m
(15)

approximate the objects’ intersection and union, respectively. The numberm can be used to
control the accuracy of the smooth approximation and to obtain convex unions and intersec-
tions. Here, for the sake of simplicity but without loss of generality, we represent obstacles
asellipses. More general representation are of course possible, for instance, polygonal ones
(see for instance [52]), but ellipses strike a good compromise between effectiveness of
planning and ease of computation. The system fits an ellipse to the contour of each detected
obstacle using our implementation of a linear (and therefore efficient) ellipse-specific fitting
algorithm [37]. More complex object representations using more than one CSG primitive
are forecast in the future and this is why we present the general CSG framework here.

4.3.3. Path Planning with Static Objects

In this case we assume all the objects are static objects in the world reference frame. All
obstaclesOi , i ∈ [1, n] of the workspace are defined as ellipses with defining functionsgi ,
defined by Eq. (11) in a 2-D Euclidean space. The free space with respect to obstacleOi is
defined as

{p ∈ E | 1− gi (p) < 0}, (16)

and the complete free space of the vehicle can be represented as

{p ∈ E | ∀i ∈ [1, n], 1− gi (p) < 0}. (17)

The objective function representing the practical problem to be solved,f , is the minimum
distance from the start to the goal point in the configuration space

∀p ∈ E, f (p) = (p− pg)T(p− pg), (18)

wherepg designs the goal point andT indicates transpose.
Our path planning problem is now cast as a classical nonlinear optimization problem,

that is,minimizing f under constraints g1, . . . , gn. A first, obvious advantage is that well-
proven numerical techniques are available to compute a solution. A second advantage is that
this approach generates very smooth paths, compatible with feasible vehicle motion. A third
advantage is that the effect of each constraint is identified clearly; alternative optimization
techniques, e.g., potential fields [53], hide the constraints in the objective function, which
often leads to an increased influence of local minima. Finally, modeling obstacles through
CSG offers considerable flexibility for the representation of the workspace.

4.3.4. Path Planning with Moving Objects

Dealing with moving objects is a very desirable property for an obstacle avoidance system.
A static workspace representation can be used, but this requires very frequent updating to
take proper account of obstacle movements. Moreover, objects are never found at their
real positions during planning (that is, between consecutive updates of the workspace), and
significantly suboptimal paths can result when the robot is pushed away from its trajectory
by a moving obstacle.



FEATURE TRACKING IN SUBSEA SEQUENCES 117

Our solution is toincorporate time explicitlyinto the representation [13, 14], thus moving
to a three-dimensional workspace. It is straightforward to include the dynamic properties of
the obstacles (estimated by the tracker) in the CSG representation. This is done by making
the parameterp, describing the position of the robot in the configuration space, and the
defining functiong dependent on time. As an example, the defining function of an ellipse
with E=R3 is made time-dependent and follows

∀p ∈ R3, g(p) = (x(t)/a(t))2+ (y(t)/b(t))2, (19)

wherea andb are the half-axes of the ellipse andp is the point of coordinates (x, y, t)
in R3. The workspace should represent the objects in a world reference frame, and only
objects which are moving in the current frame (and not with respect to the vehicle) should
be considered moving objects.

We must reformulate the path planning problem. All the equations derived for the static
case are still valid, butp is now a function of position,p (in configuration space), and also
of time, t . This has two main consequences. First,new constraints must be added to the
nonlinear optimization, to model the fact thatt is a positive and monotonically increasing
variable. Second,the goal must now be defined in time as well. As it is impossible to know
a priori when the vehicle reaches the goal, we estimate the goal time as the time taken
by the vehicle to travel a straight path (no obstacles) between starting and goal position at
maximum speed. Then, at each iteration of the path planning algorithm, a new time to go
is computed and the time value of the goal representation is updated.

This technique ensures a feasible solution at each iteration; moreover, the time-varying
representation of the workspace is perfectly suited to integrate tracking information, thus
yielding a reliable, dynamic path planning algorithm.

4.3.5. Results

For reasons of space, we show only one example of path generation by the system
integrating segmentation, feature extraction, tracking, and dynamic path planning, with real
sequences of sonar data. The sequence was taken by a forward-looking sonar developed by
FAU and fitted on the front of the Ocean Explorer (Fig. 4). The sonar has 120 beams of
width 1◦ horizontally and 30◦ vertically. As no model of the Ocean Explorer was available
for integration in the simulation, we have simulated the movement of a “blind” ROV, driven
by the data received from the sonar. Path planning was performed in the ROV reference
frame, not in the world reference frame, to simulate a relative motion between objects
and vehicle. Of course, other conditions being equal, the relative motion (and therefore
the images) generated by a still sonar looking at a moving environment is the same as the
motion generated by a moving sonar in a still environment, which is the situation expected
in a real mission.

The goal was intentionally set so that the generated path would cross that of moving
obstacles. The left column of Fig. 9 shows four frames from the original sequence; the right
column shows the same frames after segmentation. The obstacles identified are highlighted.
The boxes are rectangular regions containing obstacles. The path generated for the vehicle
and the trajectory of tracked, moving obstacles are shown in both columns.3

3 An animated MPEG version of these and other results can be found on our Web site, http://www.cee.hw.ac.uk/
∼aramis/resources/.
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FIG. 9. Left column: Example of dynamic path generation with a sequence of real images containing moving
obstacles. Right column: The same with superimposed segmentation output. In each image, the goal is indicated
by the top middle cross, and the starting point is bottom left.

In order to reduce processing time, the original images (1200× 700 pixels) were sub-
sampled by a factor of 2 in both dimensions. The whole process (from segmentation to path
generation), implemented in Matlab 5.2 on a Sun Ultra-10 under Solaris, runs at 3 s per
frame. This suggests that an optimized C++ version, part of which could run on separate,
high-speed hardware, could easily cope with an input frame rate of a few images per second,
certainly sufficient for a real-time system fitted on an AUV at cruising velocity standard for
data collection missions (a few knots).
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5. CONCLUSIONS

The main contributions of our work on video and sonar tracking for subsea sequences
are summarized below.

The real-time video tracker:

• has a much lower computational cost than trackers based on robust regression and
random sampling techniques like RANSACK or LMedSq [32, 46];
• shows very good reliability in our experiments with sequences acquired during real

ROV missions in a variety of environments;
• runs at frame rates suitable for real-time applications;
• is used as a standard components in ROV/AUV software modules developed in our

laboratory.

The sonar tracker:

• locates and tracks obstacles reliably in real, multibeam sonar sequences, taking full
advantage of dense spatial and temporal information;

FIG. 10. 10. The two ROVs allocated to the ARAMIS project. Top: ROMEO, developed by the Institute of
Naval Automation (IAN), Genoa (Italy, here seen during its mission in Antarctica in 1998. Bottom: VICTOR,
developed by IFREMER Toulon (France). Images courtesy of IAN and IFREMER.
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• is fast enough to support real-time ROV or AUV operations;
• has been integrated in a fully working path planning and obstacle avoidance system.

Current and future work involving video tracking include incorporating the video tracker
in:

• the visual servoing control system of RAUVER, a 2-m, twin-hulled, class 5 robot
submersible developed in our laboratory, which can be operated as a ROV or an AUV4;
• a real-time video mosaicking system under development.

Current work and future work involving sonar tracking include:

• evaluating our tracker as an alternative navigation sensor to inertial sensors;
• testing the obstacle avoidance and path planning system on RAUVER, and subse-

quently on ROMEO and VICTOR (see Fig. 10);
• addressing the problem of unwanted returns, typically from the sea bottom when

looking at obstacles in the water column, due to the aperture of the receiving beams (typically
in the range [0.5◦, 2◦] horizontally and [15◦, 30◦] vertically).
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