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odel-based approach to the detection and
lassification of mines in sidescan sonar

cott Reed, Yvan Petillot, and Judith Bell

This paper presents a model-based approach to mine detection and classification by use of sidescan sonar.
Advances in autonomous underwater vehicle technology have increased the interest in automatic target
recognition systems in an effort to automate a process that is currently carried out by a human operator.
Current automated systems generally require training and thus produce poor results when the test data
set is different from the training set. This has led to research into unsupervised systems, which are able
to cope with the large variability in conditions and terrains seen in sidescan imagery. The system
presented in this paper first detects possible minelike objects using a Markov random field model, which
operates well on noisy images, such as sidescan, and allows a priori information to be included through
the use of priors. The highlight and shadow regions of the object are then extracted with a cooperating
statistical snake, which assumes these regions are statistically separate from the background. Finally,
a classification decision is made using Dempster–Shafer theory, where the extracted features are com-
pared with synthetic realizations generated with a sidescan sonar simulator model. Results for the
entire process are shown on real sidescan sonar data. Similarities between the sidescan sonar and
synthetic aperture radar �SAR� imaging processes ensure that the approach outlined here could be made
applied to SAR image analysis. © 2004 Optical Society of America

OCIS codes: 100.0100, 330.1880.
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. Introduction

apid developments in autonomous underwater ve-
icle technology have altered the direction of mine-
ounter measures research toward more automated
echniques.1–3 These techniques generally require
raining, and their success can be dependent on the
imilarity between the training and test data sets.
he approach detailed here uses a three-phase pro-
ess. The first phase employs model based on a
arkov Random Field �MRF� model to directly seg-
ent the raw image into regions of object highlight,

hadow, and background. Unlike many previous de-
ection models,4,5 this one requires no training. The
RF structure of the model also allows known infor-
ation to be modelled and included through the use

f priors.6
The second phase uses a cooperating statistical
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nake �CSS� model7 to consider each of the detected
inelike objects �MLOs�. This model was originally

eveloped to ensure the accurate segmentation of ob-
ect shadow regions onto complex seabeds, such as
and ripples, when other models failed.8 The model
egments both the highlight and shadow regions of
he object by assuming the regions to be statistically
eparate, thereby enforcing a dependency between
he two snakes and constraining their movement.
he CSS model is also effective in identifying false
larms.
The third and final phase of the procedure entails

lassification of the MLO by use of a sonar simulator
odel. By using the known range and height of the
LO, one can iteratively produce synthetic presen-

ations of possible objects �restricted to cylinders,
pheres, and truncated cones here�. A Dempster–
hafer �DS� approach9–11 is used to assign a belief to
ach of the possible classes, taking into account the
egree of match �using the Hausdorff distance12� and
he plausibility of the synthetic object’s parameters.
his novel approach extends the traditional mine or
ot-mine classification to provide useful shape and
ize information. The DS framework also permits
ultiview analysis. This is important for sidescan

urveys, which generally use a lawn-mower ap-
10 January 2004 � Vol. 43, No. 2 � APPLIED OPTICS 237
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roach, often covering the same area of seabed mul-
iple times.

In Sections 2 and 3 we review the detection and
SS models previously presented by Reed et al.7 In
ection 4 we present the results for these first two
hases. The classification theory and results from
oth the monoview and multiview analyses are dis-
ussed in Section 5. In Section 6 we present our
onclusions.

. Detection Model

. MRF Theory

eneral MRF models are composed of two fields:
he observed image Y and the underlying true label
eld X. A pixel s is assigned a label xs based on two
robability measurements. The first of these con-
iders the probability that label xs will produce ob-
ervation ys. The second considers the labels of the
eighboring pixels. This interspatial dependency
mong pixels has ensured the successful use of MRF
odels in a variety of difficult segmentation

roblems.13–15

We consider a set of three random fields Z � �X, Y,
�. Field Y � �Ys, s � S� is the field of gray-level

bservations and thus takes its values from the gray-
evel range �0 . . . 255�. Label field X � �Xs, s � S� is
he underlying label field that we wish to recover
ith the segmentation. Label Xs can take values

e0 � shadow, e1 � seabottom reverberation, e2 �
bject highlight�. Field O � �Os, s � S� is defined as
he object field; Os is drawn from �o0 � object, o1 �
onobject� and is determined directly by consider-
tion of label field X. Label field O, therefore, shows
he clustering of object pixels. The probability of the
nobservable true data given the observed field Y can
e expressed by use of Bayes theorem as follows:

PX,O�Y� x, o� y� � PX� x� PO� X�o�x� PY� X� y�x�. (1)

y expressing the posterior distribution as PX,O�Y�x,
�y� � exp��U�x, y, o��,16 the desired underlying label
eld can be obtained by minimizing posterior energy:

U� x, y, o� � �
s�S

	s� xs, ys� � �

s,t�

�st
1 � �� xs, xt��

� �
s�S

�� xs, e2�ln�X�s� � �
s�S

�s� xs, os�.

(2)

he first and second terms on the right-hand side
orrespond to the likelihood and Markovian terms
sed in general MRF models. The third and the

ourth terms incorporate some of the knowledge
bout the appearance of objects in sidescan imagery.
he third term acts only on pixels with label xs �

2�object highlight�. A directional potential field
enerated by pixels labeled xs � e0�shadow� discour-
ges pixels far from a shadow region from being la-
eled xs � e2�object highlight�. This uses an adapted
otential term6 and models the a priori information
hat a mine highlight region usually has a corre-
38 APPLIED OPTICS � Vol. 43, No. 2 � 10 January 2004
ponding shadow region �see Fig. 1�. The fourth
erm considers field O and favours clustering of xs �

2�object highlight� in compact, separated clusters of
inelike dimension. �See Reed et al.7 for a complete

xplanation of the detection model.�

. Postprocessing Phase

he detection-orientated segmentation detailed in
ubsection 2.A highlights possible MLOs. Some of
hese will be obvious false alarms and can be re-
oved. First, object highlight regions that are ob-

iously too large or small can be removed �see area
nclosed within ABDE in Fig. 1�. The height of the
LO can also be computed and used by consideration

f the length of the accompanying shadow region t,
long with navigational data such as the sonar fish
eight h. This method is useful in the removal of
alse alarms produced by complex sea floors.

. Cooperating Statistical Snake Model

. CSS Model Theory

he CSS model7 was developed in response to the
ailure of conventional techniques8,17 to extract the

LOs shadow region on complex seafloors. The
SS model extracts both the object highlight and
hadow regions. We consider the detected MLO’s
ugshot image y � y�i, j� with its corresponding

emplate image w � w�i, j�, the latter of which de-
nes the shape of the two snakes at any given time.
ndices i and j represent pixel positions in the image.
t is assumed that the image is composed of object-
ighlight, object-shadow, and background regions,
escribed by �h � ��i, j����i, j� � 2�, �p � ��i, j����i, j�

1� and �b � ��i, j����i, j� � 0�, respectively. All
hree regions are described by probability density
unctions �pdf ’s� p�h, p�p, and p�b, where � , � , and

ig. 1. As in radar, the wave �here it is sound� is blocked by
bjects and a shadow is generated. Given the relative position of
he sonar fish, an estimate of the object’s height and size can
herefore be obtained. This information can then be used to re-
ove obvious false alarms.
h p
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b are the parameters of the three pdf ’s. If the prob-
bility densities are assumed to be Gaussian,18 then
he segmentation w can be obtained by maximizing

lgauss�y, w� � �Nh log��h� � Np log��p� � Nb log��b�,

(3)
here

�u �
1

Nu�w� �
�i, j���u

y�i, j�2 � � 1
Nu�w� �

�i, j���u

y�i, j��2

(4)

nd Nu�w� is the number of pixels in region u and u �
h, p, b�. The log-likelihood term in Eq. �3� is simply
function of gray-level sums and thus can be rewrit-

en as a summation around the perimeter of the two
nakes.7,18 This ensures that the iterative process
equired for finding the most likely solution is com-
utationally fast.

. Incorporating A Priori Information

he a priori knowledge that the object-highlight re-
ion is generally much brighter than the object-
hadow region can be modeled using prior term

log
Pmean�w�� � � tanh�1
2

��m� � ��� � c, (5)

here m� is the difference in mean gray level among
he pixels within each of the two snakes. The other
arameters are constants that control the dynamic
ange and crossover rate of the function. The flat-
opped form of the tanh function prevents the snakes
rom simply collapsing, thereby ensuring a high m�

alue. As seen in Fig. 1, the object-highlight region
nd corresponding object-shadow region must also
ave roughly the same along-track size �enclosed by
and E�. We define �max � max�ih� � max�ip� and

min � min�ih� � min�ip�, where ih and ip are the y
oordinates on the perimeter of the object-highlight
nd object-shadow snakes, respectively. The height
rior term can then be defined as

log
Pposition�w�� � C � t1 U���max� � ����max�2

� t2 U���min� � ����min�2, (6)

here t1 and t2 are constants that penalize large
ifferences in �max and �min. The constant C en-
ures that the prior operates in the correct dynamic
ange. U is the Heaviside function, which allows the
nakes some flexibility of movement, where constant
is set arbitrarily to a small, nonzero number.
The final posterior energy to be maximized during

he segmentation process is

J�y, w� � �0 log
Preg�w�� � �1 � �0�

� ��1 log
Pposition�w�� � �2 l�y, w� � �1.0

� �1 � �2� log
Pmean�w���, (7)

here log
Preg�w�� is a smoothing prior18 and �k k �
0, 1, 2� are weights used to control the importance of
ach term. Here �1 and �2 are set at 0.2 and 0.6,
espectively, and �0 is incremented gradually
hroughout the process.7

. Initializing the CSS Model

he detection result from Section 2 ensures a good
nitialization for the CSS model. Both snakes are
nitialized as rectangles with only four points. The

aximum and minimum rows and columns for each
bject were used to define the object-highlight rect-
ngle. The object-shadow snake was initialized by
onsidering the homogeneity of the e0�shadow� pixels
ithin it, whereas the height of the object-shadow

ectangle was set to that of the object-highlight rect-
ngle.

. Removing False Alarms with the CSS Model

omplex backgrounds can provide situations in
hich the MRF-based detection model falsely identi-
es a MLO that the postprocessing phase does not
emove. In these situations the CSS model can of-
en identify the false alarm. The CSS model oper-
tes on the assumption that there are three distinct
tatistical regions �object highlight, object shadow,
nd background�. When an object is present, the
rior log
Pmean�w�� prevents the object-highlight
nakes from expanding. False alarms that do not
ave these three distinct distributions often result in
n uncontrolled expansion of the snakes. If the
nakes expand beyond minelike dimensions, the
LO can be identified as a false alarm and can be

emoved.

. Detection and Shadow Extraction Results

he combination of the detection and CSS models
as tested on more than 200 sidescan images.
hese images were obtained from the BP’02 �battle
reparation� trials conducted at the NATO Saclant
nderwater Research Centre in Italy. This large
atabase of images ensured that the model was
ested on a large variety of terrains under dramati-
ally different conditions. Of the 200 images, 70 ob-
ects were marked by human operators as possible

LOs, many of which were the same object seen from
ifferent views. The model succeeded in detecting
6 of these isolated objects, resulting in an 80% de-
ection rate. Many of the objects that were not de-
ected were removed because of the presence of a
atermark in many of the images, a phenomenon

hat is due to the sea-surface return when the sonar
sh lies close to the surface. When this watermark
orrupts the MLO’s shadow, the object-height calcu-
ation is affected, which results in the object’s re-

oval. Manual removal of the watermark resulted
n a detection rate of 91%. Future research will ex-
lore ways to automate this process. The detection-
SS model detected 55 false alarms, usually due to

he presence of complex seabed types. This resulted
n an average of 0.275 false alarms or images. The
etection-CSS model is demonstrated in Fig. 2, which
llustrates a complex example in which some of the
bjects are lying on sand ripples. The process is
10 January 2004 � Vol. 43, No. 2 � APPLIED OPTICS 239
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xplained by use of three images; arrows indicate the
mage order. The first image contains the raw sonar
mage. The second image contains the initial MRF
etection result. The third image contains the com-
leted detection result after the postprocessing and
SS processes have been completed. All images
onsidered were 1024 � 1000 pixels in size. Figure

shows that the correct detection results are ob-
ained and that the object shadows are accurately
xtracted even when they are corrupted by shadows
rom the ripples. This was possible because of the
onstraining behavior of the CSS model. All the
alse alarms are removed during the postprocessing
nd CSS stages. It should be noted that only a few
f the false alarms detected by the CSS model have
een shown. The computation time for this result
as 163 s on a Pentium 4 1.3-GHz personal com-
uter. A simpler sonar image would require sub-
tantially less analysis time.

ig. 2. Detection CSS model result for an image containing objec
idescan image. The second image contains the MRF detection re
he detection result obtained. Accurate shadow segmentation resu
f the CSS model.
40 APPLIED OPTICS � Vol. 43, No. 2 � 10 January 2004
. Classification of Minelike Objects

an-made objects generally produce more regularly
haped shadows than do natural objects. This char-
cteristic can be used to classify an unknown MLO.
revious research has focused on template-matching
odels,17,19 which attempt to fit shadow templates of

ossible man-made objects to the MLO’s shadow.
lthough these approaches have yielded good results,

hey generally do not take into account the underly-
ng sonar shadow formation process, that is, the plau-
ibility of the tested templates is generally not
onsidered during the testing process. The method
etailed here, however, uses a sonar simulator model
o produce synthetic shadow representations from
onsidered classes �limited here to cylinders, spheres,
nd truncated cones�. Sonar simulator models have
een used in the past to train feature-based super-
ised classification models.20 Here the simulator

dden within the sand ripple seafloor. The first image is the raw
efore the post-processing or CSS stages. The third image shows

or all objects have been obtained due to the constrained movement
ts hi
sult b
lts f
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odel is used within the classification process. The
est match from each class is considered by a DS
odel. Although most models produce a hard, clas-

ification result, the DS approach allocates to each
lass a belief that can be updated as more information
e.g., another view� is made available.

The classification decision uses predominantly
hadow information. The highlight region can be
ery dependent on the MLO’s composition, where
omplex elastic scattering effects can significantly al-
er the highlight’s appearance. These effects are
ery difficult to incorporate accurately into a simple
imulator model. As a result, only the elongation of
he highlight region is considered during the classi-
cation phase. This increases the separability be-
ween the classes, as discussed later in Subsection
.C. The shadow region is related predominantly to
he shape of the object so that information regarding
he object’s composition is not required. In addition,
ecause the classification process is iterative, simu-
ation of the shadow alone significantly decreases the
omputational effort.

. Generating Synthetic Shadows

he shadow-forming process in sidescan imagery is
ummarized in Fig. 3, which shows the cross section
f a spherical object at slant range s and depth h from
he sonar fish. As shown, the sonar cannot reach the
egion of seafloor behind the object. As the sonar
sh moves along, successive pings are placed to-
ether until a complete sonar image is formed. Fig-
re 3 also shows examples of synthetically generated
hadow regions from the cylinder, sphere, and trun-
ated cone classes. Object shadows from each of the
lasses can be generated by consideration of a simple
ay-tracing model. This model is an approximation
rom an existing sonar simulator,21 which assumes

ig. 3. Description of the shadow formation process. Individu
eft-hand side�. Synthetic shadow representations from the thre
top�, sphere �middle�, and truncated cone �bottom�. These can b
sovelocity conditions and a simple point source re-
eiver, where the source and receiver are colocated.
ompensated for effects, such as the beam pattern, is
ssumed by the model. This reduction in model
omplexity is appropriate when only the generated
hadow is of interest rather the full backscattered
ignal, which would require a more complicated sim-
lator. The cylinder, truncated cone, and sphere
lasses are assumed to be completely described by
arameters �cyl � �rcyl, lcyl, dcyl, �cyl�, �sph � �rsph,
sph� and �cone � �rcone, dcone�, respectively, where l is
he length, r is the radius and d is the depth of each
bject. The angle of the cylinder with respect to the
long-track direction is represented by �cyl. With
hese parameters synthetic shadow representations
rom these object classes can be generated under the
ame sonar conditions �sonar fish height, range, res-
lution� that the MLO was detected.

. Comparing Shadow Regions

he Hausdorff distance12 is a technique that mea-
ures the resemblance between two shapes. If A �
a1, , ap� and B � �b1, , bq� are defined as the points
n the perimeter of the real and the synthetic shadow
egions, respectively, then the Hausdorff distance is
efined as

H� A, B� � max
h� A, B�, h�B, A�� (8)

here

h�a, b� � max
a�A

min
b�B

�a � b� (9)

nd � � � is some underlying norm on the points of A
nd B.
Function h�A, B� is a directed Hausdorff distance

nd is computed by first calculating the distance be-
ween each point in A to its nearest neighbour in B.

gs are added together to form an overall sonar image �bottom
sidered classes are also shown on the right-hand side: cylinder
pared with the real sonar shadow to find a match.
al pin
e con
10 January 2004 � Vol. 43, No. 2 � APPLIED OPTICS 241



T
T
w
p
H
H
d
t

c
H
c
s
o
t
i
e
g
p
t
t
s
a
r
q
e
t
p
p

C

A
e
p
t
c

F
d
f
T
f
f
d
l
n
s
H
r
H

w
o
A
m
t

s
v
a
f
o
d
f

h
m
M
t
w
f
�

l
w
t
f
e
a
s
n
b
a
t
s
�
i
i
m
i
o

D

D
a
f
c
f
T
a
f
s
t
S
c
c
o

F
a
�
c
m
b
G

2

he maximum of this set of values is h�A, B�.
herefore if h�A, B� � d, each point in A must be
ithin distance d from some point in B. A similar
rocess is carried out to compute the second directed
ausdorff distance h�B, A�. The Hausdorff distance
�A, B� is designated the maximum value of the two
irected distances h�A, B� and h�B, A�. H�A, B� is
herefore a measure of mismatch between A and B.

Parameters �cyl, �sph, and �cone were iteratively
hanged so that the best match—and the smallest
ausdorff distance H�A, B�—could be found for each

lass. Initial parameter estimates for the iterative
earch were provided by applying moment analysis
n the MLO’s extracted highlight region obtained by
he CSS model. It should be noted that this initial-
zation step was possible only because the CSS model
xtracted both the MLO’s highlight and shadow re-
ions. Large margins were set on each of the initial
arameter estimates to define a discretized parame-
er space for each class that must be searched to find
he best fit to the MLO’s shadow. The parameter
pace for both �sph and �cone was two dimensional,
llowing an exhaustive search to be used. The pa-
ameter space for �cyl was four dimensional and re-
uired Monte Carlo Markov chain techniques8 to
nsure a good maximum estimate. Estimates for
he best Hausdorff distance for each class took ap-
roximately 60 s to compute on a Pentium 4 1.3-GHz
ersonal computer.

. Obtaining Class Membership Functions

ssuming that the best Hausdorff solution Hj for
ach class j � �cyl, sph, cone� was obtained with object
arameters �j

b and that the highlight region ex-
racted from the MLO had elongation �, an overall
lass membership function can be defined by

�j
final�Hj, �j

b, �� � �j
haus�Hj��j

par��j
b��j

elong���. (10)

unction �j
haus�Hj� considers the best Hausdorff

istance value for each class. The shape of this
unction was determined for each class by training.
he data used for training and testing were taken

rom two different data sets, each under very dif-
erent sonar conditions. The training and testing
ata sets were completely disjointed, with no over-
ap. On the objects of known class j, a perfect so-
ar simulator would be expected to produce
ynthetic shadow representations with Hj � 0.
owever, the ray-tracing model used here produced

oughly Gaussian distributions around nonzero
ausdorff values, leading to the function

�j
haus�Hj� � 1 if Hj � m� j

� exp��
�Hj � m� j�

2

2�j
2 	 if Hj � m� j,

here m� j and �j
2 are the mean and variance values

f the class Gaussian distributions, respectively.
priori information on the shape and expected di-
ensions of minelike objects was introduced

hrough the use of � par�� b�. This function used
j j

42 APPLIED OPTICS � Vol. 43, No. 2 � 10 January 2004
imple trapezium fuzzy functions to allocate high
alues ��1� to parameters believed to be minelike
nd low values ��0� to the others. The trapezium
unctions were made suitably broad to ensure that
bjects with parameters relatively close to minelike
imensions could still achieve a high membership
unction.

Function �j
elong��� considered the elongation of the

ighlight region. MLO’s with high elongation are
ore likely to belong to the cylinder class, whereas
LOs with low elongation probably belong to either

he sphere or truncated-cone class. These functions
ere again simple trapezium functions determined

rom the training data, where �sph
elong��� �

cone
elong���.

The overall membership function �j
final�Hj, �j

b, ��
ay in the 
0, 1� range. These membership functions
ere used within a DS model to provide a classifica-

ion decision. The use of fuzzy functions within a DS
ramework was chosen over other classification mod-
ls for a variety of reasons. First, the limited
mount of data available for training made methods
uch as the K-NN �nearest neighbor� classifier or a
eural-network-based approach difficult. Second,
ecause the number of parameters varied with class,
fuzzy classifier model seemed simpler to implement

han a clustering model. The simplicity of the sonar
imulator model also required that functions
j
par��j

b� be robust enough to cope with inaccuracies
nherent to the simple ray-tracing assumptions used
n the simulator. An improved sonar simulator

odel would perhaps permit a more rigorous cluster-
ng approach to the classification but at the expense
f slowing the iterative process.

. Dempster–Shafer Model

empster–Shafer theory,10 frequently used as an
lternative to Bayesian theory22 and fuzzy logic23

or data fusion, allows the representation of impre-
ision and uncertainty through the definition of two
unctions: plausibility �Pls� and belief �Bel�.
hese are derived from a mass function m, which is
nalogous to the well-known probability density
unction. Mass functions are defined on the power
et of the space of discernment D. For classifica-
ion purposes, D may be the set of possible classes.
pecific to DS theory, D may also contain union of
lasses.11 Denoting 2D as the power set of D, we
an define mass function m�A� for every element A
f 2D such that

m��� � 0, �
A�2D

m� A� � 1. (11)

or the mine classification model presented here, the
llowed classes were A � �clutter, cyl, sph, cone, sph

cone�. Class A � sph � cone was used to model
onfusion between the sphere and cone classes. The
ass functions were generated from the class mem-

ership functions �j
final�Hj, �j

b, �� j � �cyl, sph, cone�.
iven the set of mass functions, the belief �Bel� and
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lausibility �Pls� of each possible outcome can be de-
ermined by

Bel��� � 0,

Bel� A� � �
B�A

m�B�, � A � D, A � �, (12)

Pls��� � 0,

Pls� A� � �
B�A��

m�B�, � A � D, A � �. (13)

decision can be made by considering either the
lausibility or belief function. In this paper, the
LO was allocated the singleton class �i.e., the MLO

annot be classified as sph � cone� with the maxi-
um belief.

. Multiview Classification

hen the same object has been viewed from multiple
spects, DS theory allows the monoview mass func-
ions to be combined. Considering mass function mk
rom source k �k � 1, . . . , n�, this rule is expressed by

m1 � m2 � . . . � mn�� A�

�

�
B1�...�Bn�A

m1�B1�m2�B2� . . . mn�Bn�

1 � �
B1�...�Bn��

m1�B1�m2�B2� . . . mn�Bn�
(14)

or all nonempty subsets A of D. The summation on
he bottom line of Eq. �14� is often referred to as the
onflict and is �1. A value of 1 means that the
vidence from the sources are completely conflicting
nd thus cannot be fused. Once the fused mass
unctions have been determined, the belief �Bel� func-
ions can be determined as in Eq. �12�, and a multi-
iew classification result can be obtained.

. Results

he classification model was first tested on monoim-
ge cases. This assumes that each MLO was de-
ected only once. The test data were provided by
RDC–Atlantic in Canada and Groupe de Etudes

Fig. 4. Examples of �a� cylinder, �b� sphere, �c� truncated c
ous-Marine l’Atlantique �GESMA� in France. The
RDC-Atlantic data were collected with a Klein 5500
ultibeam 550-kHz high-resolution sidescan sonar.
he images considered were 90 � 60 pixels in size
nd had been processed to ensure that both the across
nd along-track resolution were 0.10 m. The data
rovided from GESMA were obtained with a DF1000
ual-frequency sidescan sonar and provided images
ith a resolution of 0.03 m � 0.03 m. Examples

rom the four considered classes �cylinders, spheres,
runcated cones, and clutter� can be seen in Fig. 4.
s shown, the clutter objects are often visually very
imilar to the man-made objects.
The classification model was tested on 50 objects:

0 each from the cylinder, truncated cone, and cylin-
er classes and 20 clutter objects. The testing data
ere completely disjointed from the training data.
he results are shown in Fig. 5. The solid curve
epresents a standard mine–not-mine classification
rocess. The model correctly identified more than
0% of the mines and correctly classified approxi-
ately 50% of the clutter objects. The dashed curve

enotes a more specific classification in which the
lassification is deemed correct only if the mine’s
lass was also successfully identified. Under these
onstraints, more than 80% of the mines were still
orrectly classified when the same clutter classifica-
ion rate was maintained. Obtaining the correct
hape classification �as well as the parameter infor-
ation� makes it possible to identify the mine type

nd thus affects how the specific threat is handled.
he difference in the two classification performances

s due to cases in which the sonar conditions are such
hat the shadow regions from all classes are very
mall and similar, leading to confusion between the
lasses. Better separability between classes should
e achieved with a more complex sonar simulator.
The multiview classification model is demon-

trated on two different objects. The first is a cylin-
rical object seen from four different views. The
econd object is a truncated cone, which has also been
etected in four different passes. The different
iews can be seen in Fig. 6. The observed difference

and �d� clutter objects used to test the classification model.
one,
10 January 2004 � Vol. 43, No. 2 � APPLIED OPTICS 243
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n appearance of each object under different sonar
onditions highlights the difficulties that a feature-
ased classification model would have in classifying
ach of the objects as the same shape. However, the
onar simulator model described here uses this infor-
ation to model the underlying shadow forming pro-

ess, allowing a correct classification to be obtained.
ables 1 and 2 show the monoimage and multiimage
lassification results for the cylinder and truncated
one images, respectively. Tables 1 and 2 show how
oth the objects are correctly classified with a strong
elief. The cylindrical example is straightforward,

Fig. 5. Percentage of correctly classified mine objects plot

ig. 6. �a� Four different views of the same cylinder. �b� Four di
ifferent directions, fish heights, and slant ranges.

Table 1. Belief Functions for Different Classes for the Individ

Monoimage Belief

Object Cyl Sph Cone Clutter

1 0.789 0.084 0.084 0.295
2 0.917 0.083 0.083 0.167
3 0.917 0.083 0.083 0.167
4 0.324 0.151 0.151 0.826

aFused belief functions change as new images are added to the
44 APPLIED OPTICS � Vol. 43, No. 2 � 10 January 2004
ith three of the four images providing the correct
onoview classification result. Object 4 in Fig. 6

as a weak belief in the cylinder class owing to large
stimates for �cyl

b. However, the fused result pro-
uces a very high belief for the cylinder class. The
runcated cone example is more difficult, with three
ut of the four images providing incorrect monoview
lassification results. However, when images are
used, the consistently high truncated cone belief is
sed to correctly classify the object. Although only
wo examples are shown here, they are representa-
ive of other results obtained. The results demon-

gainst the percentage incorrectly classified clutter objects.

t views of the same truncated cone. These views are taken from

ages and the Overall Fused Result for a Cylindrical Objecta

Fused Belief

ects Fused Cyl Sph Cone Clutter

0.789 0.084 0.084 0.295
, 2 0.945 0.009 0.009 0.064
, 2, 3 0.989 0.001 0.001 0.012
, 2, 3, 4 0.969 0.001 0.001 0.030

iview classification.
fferen
ual Im
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ulti
trate the advantages of considering multiview
nalysis for classification.

. Conclusion

his paper has presented a model-based mine detec-
ion and classification system for use in sidescan im-
gery. The detection model used a MRF model to
etect possible MLOs. This model allowed the in-
lusion of a priori information through the use of
riors. Unlike many detection models currently in
se, the process is completely automated and re-
uires no training. The highlight and shadow re-
ions of the MLOs are then extracted with a CSS
odel for classification. The model obtained accu-

ate segmentation results—even on complex
eabeds—by restraining the movements of the snake
y use of a priori knowledge on the relationship be-
ween the highlight and shadow regions. The CSS
odel also allowed many false alarms to be removed

rom the initial detection result. A novel model-
ased classification system was then presented.
his model classified the object by modeling the un-
erlying physical shadow-forming process. This
ystem extended the normal mine–not-mine classifi-
ation to provide shape and size information on the
bject. The classification decision was provided by a
S framework, which allowed monoimage and mul-

iimage analyses. This feature is especially desir-
ble in sidescan surveys, where the same object is
ften viewed multiple times. Results were pre-
ented for real sidescan data. This work would also
e directly applicable to detection and classification
odels in other media such as SAR imagery.

The authors thank the Mine and Torpedo Defence
roup at DRDC-Atlantic �Canada�, the NATO
aclant Undersea Research Centre �Italy� and
ESMA �France� for providing the sidescan data
sed to present our results.
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