Model-based approach to the detection and
classification of mines in sidescan sonar

Scott Reed, Yvan Petillot, and Judith Bell

Introduction
Rapid developments in autonomous underwater ve-

This paper presents a model-based approach to mine detection and classification by use of sidescan sonar.
Advances in autonomous underwater vehicle technology have increased the interest in automatic target
recognition systems in an effort to automate a process that is currently carried out by a human operator.
Current automated systems generally require training and thus produce poor results when the test data
set is different from the training set. This has led to research into unsupervised systems, which are able
to cope with the large variability in conditions and terrains seen in sidescan imagery. The system
presented in this paper first detects possible minelike objects using a Markov random field model, which
operates well on noisy images, such as sidescan, and allows a priori information to be included through
the use of priors. The highlight and shadow regions of the object are then extracted with a cooperating
statistical snake, which assumes these regions are statistically separate from the background. Finally,
a classification decision is made using Dempster—Shafer theory, where the extracted features are com-
pared with synthetic realizations generated with a sidescan sonar simulator model. Results for the
entire process are shown on real sidescan sonar data. Similarities between the sidescan sonar and
synthetic aperture radar (SAR) imaging processes ensure that the approach outlined here could be made
applied to SAR image analysis. © 2004 Optical Society of America
OCIS codes: 100.0100, 330.1880.

snake (CSS) model to consider each of the detected
minelike objects (MLOs). This model was originally

hicle technology have altered the direction of mine-
counter measures research toward more automated
techniques.’3 These techniques generally require
training, and their success can be dependent on the
similarity between the training and test data sets.
The approach detailed here uses a three-phase pro-
cess. The first phase employs model based on a
Markov Random Field (MRF) model to directly seg-
ment the raw image into regions of object highlight,
shadow, and background. Unlike many previous de-
tection models,*5 this one requires no training. The
MREF structure of the model also allows known infor-
mation to be modelled and included through the use
of priors.®

The second phase uses a cooperating statistical
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developed to ensure the accurate segmentation of ob-
ject shadow regions onto complex seabeds, such as
sand ripples, when other models failed.® The model
segments both the highlight and shadow regions of
the object by assuming the regions to be statistically
separate, thereby enforcing a dependency between
the two snakes and constraining their movement.
The CSS model is also effective in identifying false
alarms.

The third and final phase of the procedure entails
classification of the MLO by use of a sonar simulator
model. By using the known range and height of the
MLO, one can iteratively produce synthetic presen-
tations of possible objects (restricted to cylinders,
spheres, and truncated cones here). A Dempster—
Shafer (DS) approach®-11 is used to assign a belief to
each of the possible classes, taking into account the
degree of match (using the Hausdorff distance2) and
the plausibility of the synthetic object’s parameters.
This novel approach extends the traditional mine or
not-mine classification to provide useful shape and
size information. The DS framework also permits
multiview analysis. This is important for sidescan
surveys, which generally use a lawn-mower ap-
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proach, often covering the same area of seabed mul-
tiple times.

In Sections 2 and 3 we review the detection and
CSS models previously presented by Reed et al.”7 In
Section 4 we present the results for these first two
phases. The classification theory and results from
both the monoview and multiview analyses are dis-
cussed in Section 5. In Section 6 we present our
conclusions.

2. Detection Model

A. MRF Theory

General MRF models are composed of two fields:
the observed image Y and the underlying true label
field X. A pixel s is assigned a label x, based on two
probability measurements. The first of these con-
siders the probability that label x, will produce ob-
servation y,. The second considers the labels of the
neighboring pixels. This interspatial dependency
among pixels has ensured the successful use of MRF
models in a variety of difficult segmentation
problems.13-15

We consider a set of three random fields Z = (X, Y,
0). Field Y = {Y,, s € S} is the field of gray-level
observations and thus takes its values from the gray-
level range {0 . . . 255}. Label field X = {X, s € S}is
the underlying label field that we wish to recover
with the segmentation. Label X, can take values
{e, = shadow, e; = seabottom reverberation, e, =
object highlight}. Field O = {0O,, s € S} is defined as
the object field; O, is drawn from {o, = object, 0; =
nonobject} and is determined directly by consider-
ation of label field X. Label field O, therefore, shows
the clustering of object pixels. The probability of the
unobservable true data given the observed field Y can
be expressed by use of Bayes theorem as follows:

Py oy(x, o|y) = Px(x) Pox(o|x) Pyx(y|x). (1)

By expressing the posterior distribution as Py g y(x,
oly) « exp{—Ul(x, y, 0)},16 the desired underlying label
field can be obtained by minimizing posterior energy:

U(x’ y’ O) = E (Ds(xs’ ys) + E Bst[l - 6(xs’ xt)]

seS (s,t)
- E a(xs’ QQ)IH\I}X(S) - 2 Xs(xsa Os)-
sES sES

(2)

The first and second terms on the right-hand side
correspond to the likelihood and Markovian terms
used in general MRF models. The third and the
fourth terms incorporate some of the knowledge
about the appearance of objects in sidescan imagery.
The third term acts only on pixels with label x, =
ey(object highlight). A directional potential field
generated by pixels labeled x, = ey(shadow) discour-
ages pixels far from a shadow region from being la-
beled x, = ey(object highlight). This uses an adapted
potential term® and models the a priori information
that a mine highlight region usually has a corre-
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Fig. 1. As in radar, the wave (here it is sound) is blocked by
objects and a shadow is generated. Given the relative position of
the sonar fish, an estimate of the object’s height and size can
therefore be obtained. This information can then be used to re-
move obvious false alarms.

sponding shadow region (see Fig. 1). The fourth
term considers field O and favours clustering of x, =
ey(object highlight) in compact, separated clusters of
minelike dimension. (See Reed et al.” for a complete
explanation of the detection model.)

B. Postprocessing Phase

The detection-orientated segmentation detailed in
Subsection 2.A highlights possible MLOs. Some of
these will be obvious false alarms and can be re-
moved. First, object highlight regions that are ob-
viously too large or small can be removed (see area
enclosed within ABDE in Fig. 1). The height of the
MLO can also be computed and used by consideration
of the length of the accompanying shadow region ¢,
along with navigational data such as the sonar fish
height 4. This method is useful in the removal of
false alarms produced by complex sea floors.

3. Cooperating Statistical Snake Model

A. CSS Model Theory

The CSS model” was developed in response to the
failure of conventional techniques®!? to extract the
MLOs shadow region on complex seafloors. The
CSS model extracts both the object highlight and
shadow regions. We consider the detected MLO’s
mugshot image y = y(i, j) with its corresponding
template image w = w(i, j), the latter of which de-
fines the shape of the two snakes at any given time.
Indices i and j represent pixel positions in the image.
It is assumed that the image is composed of object-
highlight, object-shadow, and background regions,
= 1} and Q, = {@, j)|o(, j) = 0}, respectively. All
three regions are described by probability density
functions (pdf’s) p*’, p*», and p**, where p,,, p,, and



|, are the parameters of the three pdf’s. If the prob-
ability densities are assumed to be Gaussian,'® then
the segmentation w can be obtained by maximizing

lgauss(ya W) = _Nh ]-Og(eh) - Np log(ep) - Nb ]-og(eb)a
3)
where
2
b=y (w) (U)EEQ y(i, j)” = {N ) (U)EEQ y(i, J)}

(4)

and N, (w) is the number of pixels in region v and u €
{h,p, b}. The log-likelihood term in Eq. (3) is simply
a function of gray-level sums and thus can be rewrit-
ten as a summation around the perimeter of the two
snakes.”-18 This ensures that the iterative process
required for finding the most likely solution is com-
putationally fast.

B. Incorporating A Priori Information

The a priori knowledge that the object-highlight re-
gion is generally much brighter than the object-
shadow region can be modeled using prior term

10g[ P nean(W)] = p tanh(; a(my — B)) te, B

where m , is the difference in mean gray level among
the pixels within each of the two snakes. The other
parameters are constants that control the dynamic
range and crossover rate of the function. The flat-
topped form of the tanh function prevents the snakes
from simply collapsing, thereby ensuring a high m,
value. As seen in Fig. 1, the object-highlight region
and corresponding object-shadow region must also
have roughly the same along-track size (enclosed by
D and E). We define A, . = max{zh} - max{z } and
Ain = min{i,} — min{i,}, where i, and i, are the y
coordinates on the perlmeter of the obJect highlight
and object-shadow snakes, respectively. The height
prior term can then be defined as

C - 1y U(|Amax| - €)|Amax|2
- t2 U(|Amin| - C)|Amin|25 (6)

where ¢, and ¢, are constants that penalize large
differences in A, and A,_;,. The constant C en-
sures that the prior operates in the correct dynamic
range. U isthe Heaviside function, which allows the
snakes some flexibility of movement, where constant
{ is set arbitrarily to a small, nonzero number.

The final posterior energy to be maximized during
the segmentation process is

J(y, w)

1Og[Pposition(W)] =

= )\O log[Preg(w)] + (1 - )\0)
X {)\1 log[Pposition(W)] + )\2l(y’ W) + (10
)\2) log[Pmean(W)]}’ (7)

where log[P,.,(w)] is a smoothing prior'® and \, £ €
{0, 1, 2} are weights used to control the importance of

each term. Here \; and \, are set at 0.2 and 0.6,
respectively, and )\, is incremented gradually
throughout the process.?

C. Initializing the CSS Model

The detection result from Section 2 ensures a good
initialization for the CSS model. Both snakes are
initialized as rectangles with only four points. The
maximum and minimum rows and columns for each
object were used to define the object-highlight rect-
angle. The object-shadow snake was initialized by
considering the homogeneity of the e,(shadow) pixels
within it, whereas the height of the object-shadow
rectangle was set to that of the object-highlight rect-
angle.

D. Removing False Alarms with the CSS Model

Complex backgrounds can provide situations in
which the MRF-based detection model falsely identi-
fies a MLO that the postprocessing phase does not
remove. In these situations the CSS model can of-
ten identify the false alarm. The CSS model oper-
ates on the assumption that there are three distinct
statistical regions (object highlight, object shadow,
and background). When an object is present, the
prior log[P, ...(W)] prevents the object-highlight
snakes from expanding. False alarms that do not
have these three distinct distributions often result in
an uncontrolled expansion of the snakes. If the
snakes expand beyond minelike dimensions, the
MLO can be identified as a false alarm and can be
removed.

4. Detection and Shadow Extraction Results

The combination of the detection and CSS models
was tested on more than 200 sidescan images.
These images were obtained from the BP’02 (battle
preparation) trials conducted at the NATO Saclant
Underwater Research Centre in Italy. This large
database of images ensured that the model was
tested on a large variety of terrains under dramati-
cally different conditions. Of the 200 images, 70 ob-
jects were marked by human operators as possible
MLOs, many of which were the same object seen from
different views. The model succeeded in detecting
56 of these isolated objects, resulting in an 80% de-
tection rate. Many of the objects that were not de-
tected were removed because of the presence of a
watermark in many of the images, a phenomenon
that is due to the sea-surface return when the sonar
fish lies close to the surface. When this watermark
corrupts the MLO’s shadow, the object-height calcu-
lation is affected, which results in the object’s re-
moval. Manual removal of the watermark resulted
in a detection rate of 91%. Future research will ex-
plore ways to automate this process. The detection-
CSS model detected 55 false alarms, usually due to
the presence of complex seabed types. This resulted
in an average of 0.275 false alarms or images. The
detection-CSS model is demonstrated in Fig. 2, which
illustrates a complex example in which some of the
objects are lying on sand ripples. The process is

10 January 2004 / Vol. 43, No. 2 / APPLIED OPTICS 239



Fig. 2. Detection CSS model result for an image containing objects hidden within the sand ripple seafloor. The first image is the raw

sidescan image. The second image contains the MRF detection result before the post-processing or CSS stages.

The third image shows

the detection result obtained. Accurate shadow segmentation results for all objects have been obtained due to the constrained movement

of the CSS model.

explained by use of three images; arrows indicate the
image order. The first image contains the raw sonar
image. The second image contains the initial MRF
detection result. The third image contains the com-
pleted detection result after the postprocessing and
CSS processes have been completed. All images
considered were 1024 X 1000 pixels in size. Figure
2 shows that the correct detection results are ob-
tained and that the object shadows are accurately
extracted even when they are corrupted by shadows
from the ripples. This was possible because of the
constraining behavior of the CSS model. All the
false alarms are removed during the postprocessing
and CSS stages. It should be noted that only a few
of the false alarms detected by the CSS model have
been shown. The computation time for this result
was 163 s on a Pentium 4 1.3-GHz personal com-
puter. A simpler sonar image would require sub-
stantially less analysis time.
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5. Classification of Minelike Objects

Man-made objects generally produce more regularly
shaped shadows than do natural objects. This char-
acteristic can be used to classify an unknown MLO.
Previous research has focused on template-matching
models,17-1? which attempt to fit shadow templates of
possible man-made objects to the MLO’s shadow.
Although these approaches have yielded good results,
they generally do not take into account the underly-
ing sonar shadow formation process, that is, the plau-
sibility of the tested templates is generally not
considered during the testing process. The method
detailed here, however, uses a sonar simulator model
to produce synthetic shadow representations from
considered classes (limited here to cylinders, spheres,
and truncated cones). Sonar simulator models have
been used in the past to train feature-based super-
vised classification models.2° Here the simulator
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Fig. 3. Description of the shadow formation process.
left-hand side).
(top), sphere (middle), and truncated cone (bottom).

model is used within the classification process. The
best match from each class is considered by a DS
model. Although most models produce a hard, clas-
sification result, the DS approach allocates to each
class a beliefthat can be updated as more information
(e.g., another view) is made available.

The classification decision uses predominantly
shadow information. The highlight region can be
very dependent on the MLO’s composition, where
complex elastic scattering effects can significantly al-
ter the highlight’s appearance. These effects are
very difficult to incorporate accurately into a simple
simulator model. As a result, only the elongation of
the highlight region is considered during the classi-
fication phase. This increases the separability be-
tween the classes, as discussed later in Subsection
5.C. The shadow region is related predominantly to
the shape of the object so that information regarding
the object’s composition is not required. In addition,
because the classification process is iterative, simu-
lation of the shadow alone significantly decreases the
computational effort.

A. Generating Synthetic Shadows

The shadow-forming process in sidescan imagery is
summarized in Fig. 3, which shows the cross section
of a spherical object at slant range s and depth A from
the sonar fish. As shown, the sonar cannot reach the
region of seafloor behind the object. As the sonar
fish moves along, successive pings are placed to-
gether until a complete sonar image is formed. Fig-
ure 3 also shows examples of synthetically generated
shadow regions from the cylinder, sphere, and trun-
cated cone classes. Object shadows from each of the
classes can be generated by consideration of a simple
ray-tracing model. This model is an approximation
from an existing sonar simulator,2! which assumes

SYNTHETIC SHADOW EXAMPLE

S

Individual pings are added together to form an overall sonar image (bottom
Synthetic shadow representations from the three considered classes are also shown on the right-hand side:
These can be compared with the real sonar shadow to find a match.

cylinder

isovelocity conditions and a simple point source re-
ceiver, where the source and receiver are colocated.
Compensated for effects, such as the beam pattern, is
assumed by the model. This reduction in model
complexity is appropriate when only the generated
shadow is of interest rather the full backscattered
signal, which would require a more complicated sim-
ulator. The cylinder, truncated cone, and sphere
classes are assumed to be completely described by
parameters ®cyl = {rcyl’ lcyh dcyh d)cyl}’ ®sph = {rs h>
dspnt and O g0 = {cones deonel»> TESPectively, where [ is
the length, r is the radius and d is the depth of each
object. The angle of the cylinder with respect to the
along-track direction is represented by ¢.,;. With
these parameters synthetic shadow representations
from these object classes can be generated under the
same sonar conditions (sonar fish height, range, res-
olution) that the MLO was detected.

B. Comparing Shadow Regions

The Hausdorff distance!? is a technique that mea-
sures the resemblance between two shapes. IfA =
{ay, ,a,}and B = {b,, , b,} are defined as the points
on the perimeter of the reaql and the synthetic shadow
regions, respectively, then the Hausdorff distance is
defined as

H(A, B) = max[h(A, B), h(B, A)] 8)
where
h(a, b) = max min ||a — b|| 9)
a€A bEB
and || - || is some underlying norm on the points of A
and B

Fun'ction h(A, B) is a directed Hausdorff distance
and is computed by first calculating the distance be-
tween each point in A to its nearest neighbour in B.

10 January 2004 / Vol. 43, No. 2 / APPLIED OPTICS 241



The maximum of this set of values is A(A, B).
Therefore if h(A, B) = d, each point in A must be
within distance d from some point in B. A similar
process is carried out to compute the second directed
Hausdorff distance A(B, A). The Hausdorff distance
H(A, B) is designated the maximum value of the two
directed distances h(A, B) and h(B, A). H(A, B) is
therefore a measure of mismatch between A and B.

Parameters 0, ©,,,, and 0O, were iteratively
changed so that the best match—and the smallest
Hausdorff distance H(A, B)—could be found for each
class. Initial parameter estimates for the iterative
search were provided by applying moment analysis
on the MLO’s extracted highlight region obtained by
the CSS model. It should be noted that this initial-
ization step was possible only because the CSS model
extracted both the MLO’s highlight and shadow re-
gions. Large margins were set on each of the initial
parameter estimates to define a discretized parame-
ter space for each class that must be searched to find
the best fit to the MLO’s shadow. The parameter
space for both @, and 0.,,, was two dimensional,
allowing an exhaustive search to be used. The pa-
rameter space for 0., was four dimensional and re-
quired Monte Carlo Markov chain techniques® to
ensure a good maximum estimate. Estimates for
the best Hausdorff distance for each class took ap-
proximately 60 s to compute on a Pentium 4 1.3-GHz
personal computer.

C. Obtaining Class Membership Functions

Assuming that the best Hausdorff solution H: for
each classj € {cyl, sph, cone} was obtained with ogject
parameters ©® and that the highlight region ex-
tracted from the MLO had elongation «, an overall
class membership function can be defined by
u)jﬁnal(}[j, @_b, 0() — wjhaus(Hj)wjpar(@jb)wjelong(a). (10)

J

Function mjha“S(Hj) considers the best Hausdorff
distance value for each class. The shape of this
function was determined for each class by training.
The data used for training and testing were taken
from two different data sets, each under very dif-
ferent sonar conditions. The training and testing
data sets were completely disjointed, with no over-
lap. On the objects of known class j, a perfect so-
nar simulator would be expected to produce
synthetic shadow representations with H; ~ 0.
However, the ray-tracing model used here produced
roughly Gaussian distributions around nonzero
Hausdorff values, leading to the function

(,thaus(HJ*) = 1
H.— m,)?
- exp[— \H, —my)”

2

ifH; =m;
} ifH;,>m,,

where m; and (rj2 are the mean and variance values
of the cfass Gaussian distributions, respectively.
A priori information on the shape and expected di-
mensions of minelike objects was introduced

through the use of w/”*(®,”). This function used
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simple trapezium fuzzy functions to allocate high
values (=1) to parameters believed to be minelike
and low values (=~0) to the others. The trapezium
functions were made suitably broad to ensure that
objects with parameters relatively close to minelike
dimensions could still achieve a high membership
function.

Function wjelmg(a) considered the elongation of the
highlight region. MLOQO’s with high elongation are
more likely to belong to the cylinder class, whereas
MLOs with low elongation probably belong to either
the sphere or truncated-cone class. These functions
were again simple trapezium functions determined
from the training data, where w,,"¢(a) =

® elong( OL) P

cone
The overall membership function mjﬁnal(H -, ®jb, o)

lay in the [0, 1] range. These membership functions
were used within a DS model to provide a classifica-
tion decision. The use of fuzzy functions within a DS
framework was chosen over other classification mod-
els for a variety of reasons. First, the limited
amount of data available for training made methods
such as the K-NN (nearest neighbor) classifier or a
neural-network-based approach difficult. Second,
because the number of parameters varied with class,
a fuzzy classifier model seemed simpler to implement
than a clustering model. The simplicity of the sonar
simulator model also required that functions
u)jpar(jb) be robust enough to cope with inaccuracies
inherent to the simple ray-tracing assumptions used
in the simulator. An improved sonar simulator
model would perhaps permit a more rigorous cluster-
ing approach to the classification but at the expense
of slowing the iterative process.

D. Dempster-Shafer Model

Dempster—Shafer theory,'© frequently used as an
alternative to Bayesian theory?? and fuzzy logic23
for data fusion, allows the representation of impre-
cision and uncertainty through the definition of two
functions: plausibility (Pls) and belief (Bel).
These are derived from a mass function m, which is
analogous to the well-known probability density
function. Mass functions are defined on the power
set of the space of discernment D. For classifica-
tion purposes, D may be the set of possible classes.
Specific to DS theory, D may also contain union of
classes.!’ Denoting 2P as the power set of D, we
can define mass function m(A) for every element A
of 2P such that

m(@) =0, > m(A) =1. (11)

Ac2D

For the mine classification model presented here, the
allowed classes were A = {clutter, cyl, sph, cone, sph
U cone}. Class A = sph U cone was used to model
confusion between the sphere and cone classes. The
mass functions were generated from the class mem-
bership functions mjﬁnal H,, ®J~b ,a)j € {cyl, sph, cone}.
Given the set of mass functions, the belief (Bel) and



(a) (b)

Fig. 4. Examples of (a) cylinder, (b) sphere, (c) truncated cone, and (d) clutter objects used to test the classification model.

plausibility (Pls) of each possible outcome can be de-
termined by

Bel(9) = 0,

Bel(A) = > m(B), VACD,A+0, (12
BCA

Pls(0) = 0,

Pls(A)= >, m(B), VACD,A#0. (13)
BNA#0

A decision can be made by considering either the
plausibility or belief function. In this paper, the
MLO was allocated the singleton class (i.e., the MLO
cannot be classified as sph U cone) with the maxi-
mum belief.

E. Multiview Classification

When the same object has been viewed from multiple
aspects, DS theory allows the monoview mass func-
tions to be combined. Considering mass function m,,
from source & (2 =1, ..., n), this rule is expressed by

(my @ my; @ ... D m,)(A)

E ml(Bl)mZ(BZ) ce mn(Bn)
BiN...NB,=A
= (14)
1- > my(B)myBy) ... m,(B,)
B1N...NB,=0

for all nonempty subsets A of D. The summation on
the bottom line of Eq. (14) is often referred to as the
conflict and is =1. A value of 1 means that the
evidence from the sources are completely conflicting
and thus cannot be fused. Once the fused mass
functions have been determined, the belief (Bel) func-
tions can be determined as in Eq. (12), and a multi-
view classification result can be obtained.

F. Results

The classification model was first tested on monoim-
age cases. This assumes that each MLO was de-
tected only once. The test data were provided by
DRDC-Atlantic in Canada and Groupe de Etudes

() (d)

Sous-Marine ’Atlantique (GESMA) in France. The
DRDC-Atlantic data were collected with a Klein 5500
multibeam 550-kHz high-resolution sidescan sonar.
The images considered were 90 X 60 pixels in size
and had been processed to ensure that both the across
and along-track resolution were 0.10 m. The data
provided from GESMA were obtained with a DF1000
dual-frequency sidescan sonar and provided images
with a resolution of 0.03 m X 0.03 m. Examples
from the four considered classes (cylinders, spheres,
truncated cones, and clutter) can be seen in Fig. 4.
As shown, the clutter objects are often visually very
similar to the man-made objects.

The classification model was tested on 50 objects:
10 each from the cylinder, truncated cone, and cylin-
der classes and 20 clutter objects. The testing data
were completely disjointed from the training data.
The results are shown in Fig. 5. The solid curve
represents a standard mine-not-mine classification
process. The model correctly identified more than
90% of the mines and correctly classified approxi-
mately 50% of the clutter objects. The dashed curve
denotes a more specific classification in which the
classification is deemed correct only if the mine’s
class was also successfully identified. Under these
constraints, more than 80% of the mines were still
correctly classified when the same clutter classifica-
tion rate was maintained. Obtaining the correct
shape classification (as well as the parameter infor-
mation) makes it possible to identify the mine type
and thus affects how the specific threat is handled.
The difference in the two classification performances
is due to cases in which the sonar conditions are such
that the shadow regions from all classes are very
small and similar, leading to confusion between the
classes. Better separability between classes should
be achieved with a more complex sonar simulator.

The multiview -classification model is demon-
strated on two different objects. The first is a cylin-
drical object seen from four different views. The
second object is a truncated cone, which has also been
detected in four different passes. The different
views can be seen in Fig. 6. The observed difference
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Fig. 5. Percentage of correctly classified mine objects plotted against the percentage incorrectly classified clutter objects.

in appearance of each object under different sonar
conditions highlights the difficulties that a feature-
based classification model would have in classifying
each of the objects as the same shape. However, the
sonar simulator model described here uses this infor-
mation to model the underlying shadow forming pro-
cess, allowing a correct classification to be obtained.
Tables 1 and 2 show the monoimage and multiimage
classification results for the cylinder and truncated
cone images, respectively. Tables 1 and 2 show how
both the objects are correctly classified with a strong
belief. The cylindrical example is straightforward,

Fig. 6. (a) Four different views of the same cylinder.
different directions, fish heights, and slant ranges.

with three of the four images providing the correct
monoview classification result. Object 4 in Fig. 6
has a weak belief in the cylinder class owing to large
estimates for @cylb. However, the fused result pro-
duces a very high belief for the cylinder class. The
truncated cone example is more difficult, with three
out of the four images providing incorrect monoview
classification results. However, when images are
fused, the consistently high truncated cone belief is
used to correctly classify the object. Although only
two examples are shown here, they are representa-
tive of other results obtained. The results demon-

(b)

(b) Four different views of the same truncated cone. These views are taken from

Table 1. Belief Functions for Different Classes for the Individual Images and the Overall Fused Result for a Cylindrical Object”

Monoimage Belief

Fused Belief

Object Cyl Sph Cone Clutter Objects Fused Cyl Sph Cone Clutter
1 0.789 0.084 0.084 0.295 1 0.789 0.084 0.084 0.295
2 0.917 0.083 0.083 0.167 1,2 0.945 0.009 0.009 0.064
3 0.917 0.083 0.083 0.167 1,2, 3 0.989 0.001 0.001 0.012
4 0.324 0.151 0.151 0.826 1,234 0.969 0.001 0.001 0.030

“Fused belief functions change as new images are added to the multiview classification.
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Table 2. Belief Functions for Different Classes for the Individual Images and the Overall Fused Result for a Truncated Cone Object”

Monoimage Belief

Fused Belief

Object Cyl Sph Cone Clutter Objects Fused Cyl Sph Cone Clutter
5 0.145 0.313 0.371 0.605 5 0.145 0.313 0.371 0.605
6 0.194 0.194 0.561 0.632 5,6 0.047 0.102 0.350 0.642
7 0.045 0.500 0.652 0.091 5,6,7 0.007 0.156 0.700 0.179
8 0.131 0.456 0.362 0.441 5,6,7,8 0.002 0.178 0.634 0.199

s Uy

“Fused belief functions change as new image are added to the multiview classification.

strate the advantages of considering multiview
analysis for classification.

6. Conclusion

This paper has presented a model-based mine detec-
tion and classification system for use in sidescan im-
agery. The detection model used a MRF model to
detect possible MLOs. This model allowed the in-
clusion of a priori information through the use of
priors. Unlike many detection models currently in
use, the process is completely automated and re-
quires no training. The highlight and shadow re-
gions of the MLOs are then extracted with a CSS
model for classification. The model obtained accu-
rate segmentation results—even on complex
seabeds—by restraining the movements of the snake
by use of a priori knowledge on the relationship be-
tween the highlight and shadow regions. The CSS
model also allowed many false alarms to be removed
from the initial detection result. A novel model-
based classification system was then presented.
This model classified the object by modeling the un-
derlying physical shadow-forming process. This
system extended the normal mine-not-mine classifi-
cation to provide shape and size information on the
object. The classification decision was provided by a
DS framework, which allowed monoimage and mul-
tiimage analyses. This feature is especially desir-
able in sidescan surveys, where the same object is
often viewed multiple times. Results were pre-
sented for real sidescan data. This work would also
be directly applicable to detection and classification
models in other media such as SAR imagery.

The authors thank the Mine and Torpedo Defence
group at DRDC-Atlantic (Canada), the NATO
Saclant Undersea Research Centre (Italy) and
GESMA (France) for providing the sidescan data
used to present our results.
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