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Determination of the optical constants of thin films in the visible by static
dispersive Fourier transform spectroscopy

A. R. Harvey
Defence Evaluation and Research Agency, St Andrews Road, Malvern, Worcestershire, WR14 3PS,
United Kingdom

~Received 19 December 1997; accepted for publication 28 July 1998!

Conventional dispersive Fourier transform spectrometry~DFTS! is a powerful tool for determining
optical constants of materials. However, the refined and intrinsically high-cost mechanically
scanned interferometers that are necessary are not well suited to use in hostile environments or for
time-resolved operation. We describe here a novel approach to DFTS that employs a combination
of a Wollaston prism and a linear detector array. It is ideally suited to the precision characterization
of thin films with physical thicknesses of up to about 1000 wavelengths or typically about 1 mm.
The simplicity and optical efficiency of conventional DFTS are combined with the inherent
robustness, superior time resolution, and high repeatability of spatial interferometry. The technique
offers an optical throughput that is an order of magnitude higher than spectrophotometry or spectral
ellipsometry while accuracies of 1 part in 104 and repeatability of 1 part in 105 are possible for the
measurements of the real part of the refractive index. The imaginary component of the refractive
index of thick transparent samples has been measured with an absolute error of less than 2
31024. The technique may be readily applied from the vacuum ultraviolet to the mid infrared. We
present proof-of-principle measurements of optical constants at wave numbers between 9000 and
25 000 cm21 for a self-supporting film of Melinex and for a thin film of ZnSe grown by molecular
beam epitaxy onto a glass substrate. ©1998 American Institute of Physics.
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I. INTRODUCTION

Of the many techniques that may be used to determ
the optical constants or optical thicknesses of materials,1 dis-
persive Fourier transform spectroscopy~DFTS! offers an al-
luring array of features.2–5 Salient advantages include:~1! it
is an inherently broadband technique with a very high opt
throughput so that the spectral variation of optical consta
can be determined more quickly than by competing te
niques such as spectrophotometry and spectrometric e
sometry,~2! the effects of multiple reflections that can b
problematic with coherent illumination are easily avoide
~3! the phase and amplitude characteristics imposed on
electromagnetic wave by its interaction with a sample
measured directly and the optical constants are calculate
a simple manner and with lower uncertainties than by ot
methods. Unfortunately, the Michelson interferometers u
for DFTS require considerable refinement and expense
this has tended to restrict its use to the controlled envir
ment of the research laboratory. Furthermore, the temp
resolution of these instruments is limited by the use of m
chanically scanned mirrors. The Nyquist criterion requi
that the interferogram is sampled for mirror displaceme
known with a precision of better than one quarter of a wa
length. This becomes increasingly difficult at shorter wa
lengths and consequently the DFTS technique has been
mainly in the far infrared where this criterion is more eas
met. Where extension of DFTS to visible wavelengths h
been reported,6 a complex laser interferometer and phas
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lock-loop system was used to measure the mirror displa
ments with sufficient accuracy.

We describe here a novel approach to DFTS that yie
an inherently robust, and low-cost instrument ideally sui
to high-speed and high accuracy measurements of op
constants or optical thickness in hostile environments. I
based upon static Fourier transform spectrometry that
ploits the spatial variation in path difference introduced b
tween orthogonally polarized beams propagating throug
Wollaston prism.7–9 The resulting interferograms are forme
in parallel, in the spatial domain, enabling single-shot a
time-resolved measurements to be made. For general in
mation on spectroscopy using spatial interferometry, see
article by Caulfield.10 The interferogram spatial wavelength
are of macroscopic dimensions enabling the developmen
a low-cost Fourier transform spectrometer that can opera
wavelengths as short as the vacuum ultraviolet.11 The ab-
sence of moving parts results in highly repeatable meas
ments and a very reliable, low-maintenance instrument.
describe the modification of static Fourier transform sp
trometry to enable dispersive measurements of the op
constants of thin films. All of the accepted advantages
DFTS over alternative techniques are retained. It is en
aged that the instrument can be usefully employed in hos
environments for the time-resolved measurement of the
tical constants or thicknesses of growing thin films or
self-supporting dielectric films. Optical materials and co
ponents are available that enable operation for light w
wavelengths as short as 120 nm or as long as 7mm.
9 © 1998 American Institute of Physics
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In Sec. II, the static DFTS technique is described an
simple algorithm for the calculation of the spectral variati
of complex refractive index analogous to those used in c
ventional dispersive Fourier transform spectrometry is p
sented. This algorithm yields values for the real part of
refractive index with a typical absolute accuracy a few pa
in 1000. In Sec. III we discuss the effect and limitations
using an extended white light source with the static DF
and demonstrate that the optical throughput efficiency
Fourier transform spectroscopy~the so-called Jacquinot ad
vantage!, is largely retained. We describe in Sec. IV ho
systematic errors introduced by imaging aberrations and
geometry of the measurement can be calibrated to red
uncertainty to less than 0.01%. Instrument calibration is
scribed in Sec. V, random and systematic error budgets
discussed in Sec. VI and in Sec. VII we present proof-
principle measurements of the optical constants of a thin
of ZnSe grown by molecular beam epitaxy onto a glass s
strate and of a free-standing film of Melinex@a poly~tetraph-
thalate! film similar to Mylar#.

II. THEORY

In conventional transmission DFTS, the sample is pla
in one arm of a Michelson interferometer as shown in Fig
If the path difference between the arms is scanned with
sample removed, a background white-light interferogram
recorded at the detector that is the Fourier transform of
optical frequency power spectrum of the light source. T
interferogram is typified by a grand maximum at the ze
path difference~ZPD! position with a modulation that de
creases rapidly with increasing path difference. For a DF
measurement, a sample interferogram is then recorded
the sample located in one arm as shown in Fig. 1. The op
delay introduced by the sample causes the grand maxim
of the sample interferogram to be displaced a distancd
closer to the beam splitter, where

2d5~n21!t, ~1!

n is the refractive index of the sample,t is its thickness and
it has been tacitly assumed that the sample is nondisper
For the general case of a dispersive sample, it is conven
to separate the phase differences between the backgr
and sample interferograms into two components: a non
persive component related by Eq.~1! to the translation of the

FIG. 1. Conventional DFTS using a mechanically scanned interferom
The sample is placed in one arm of the interferometer.
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interferogram and a dispersive component that is determ
by the relative phases of each Fourier component of
sample interferogram. Provided that the thickness of
sample is known, the variation of the refractive index w
spectral frequency can be calculated from the sum of
dispersive and nondispersive components. In fact, DF
may be used to calculate the spectral variation of the m
general, complex refractive index,n̂(s)5n(s)1 ik(s),
wherek~s! is the extinction coefficient related to the absor
tion coefficienta~s! by k(s)5a(s)/4ps ands51/l is the
wave number of light of wavelengthl. The complex refrac-
tive indices and thickness of a planar sample completely
termine its complex amplitude transmission and reflect
characteristics. For opaque samples, the optical constants
be determined by reflection DFTS in which the sample
places the fixed mirror.6

We will now describe the operation of the static DFT
and how the algorithms employed in conventional DFTS
adapted to enable determination of optical constants. A sc
matic of the instrument appears in Fig. 2. White light fro
an extended thermal source such as a tungsten lamp
discharge lamp is approximately collimated and illumina
the full aperture of the Wollaston prism. This light is pola
ized by a simple film polarizer oriented at either145° or
245° to the optic axes of the Wollaston prism. Equal inte
sities of mutually coherent light are resolved into the or
nary and extraordinary colinearly propagating compone
within the first wedge of the Wollaston prism. After tran
mission through the second wedge of the Wollaston pris
there is a path difference12

D52b~s!xW tan q ~2!

between the orthogonally polarized components, wh
b(s)5@no(s)2ne(s)# is the birefringence of the prism ma
terial at wave numbers, no(s) andne(s) are the ordinary
and extraordinary refractive indices of the Wollaston pris
material,xW is the transverse displacement from the cente
the Wollaston prism andq is the wedge angle of the Wol
laston prism. The spectral variation of birefringenceb(s)
and of other parameters is indicated here and elsewher

r.

FIG. 2. DFTS using the static Fourier transform spectrometer. The samp
placed at one of the images of the source in the back focal plane of the
lens.
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this article by brackets where it results in a significant cha
in a calculation. Where it is not significant the brackets
omitted.

The spatial variation in path difference introduced by t
Wollaston prism is analogous to the temporal variation int
duced by the moving mirrors of a Michelson interferome
and leads to a spatial interferogram localised to a virt
plane within the Wollaston prism. A relay lens forms a re
image of the interferogram on a linear detector array an
second polarizer at 45° acts as an analyzer to enable
orthogonally polarized components to interfere. Light
wave numbers forms interference fringes at the detect
with spatial frequency9

v~s!5
2sb~s!tan q

M ~s!
, ~3!

whereM (s) is the magnification provided by the relay len
The discontinuity in refractive index at the wedge interfa
leads to the mutual divergence of the orthogonally polari
components at an angle12

w~s!52b~s!tan q, ~4!

so that each forms a separate image of the source in the
focal plane of the relay lens. The sample to be measure
placed at one of these image points as shown in Fig. 2.
vided that the angular extension of the source is less thaw,
there is no overlap of the source images and a sample ma
located so as to impart an optical delay to only one ‘‘arm’’
the interferometer. The centers of the two image points
separated by a transverse distancew(s) f (s), wheref (s) is
the focal length of the relay lens. The instrument is topolo
cally equivalent to a Martin–Puplett interferometer in whi
the sample is located for single-pass measurement.13 The
standard techniques of DFTS may now be adapted to de
mine the optical constants or physical thickness of
sample.

Insertion of the sample into one arm of the interfero
eter increases the optical delay in that arm so that the g
maximum of the interferogram is translated a distanceD
with respect to the reference interferogram as shown by
schematic interferograms in Fig. 3. The real part of the
fractive index may be obtained by inserting Eq.~2! into Eq.
~1! to give

n~s!511
2Db~s!tan q

M ~s!t
, ~5!

FIG. 3. Schematic sample and reference interferograms.
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If both the sample and the birefringence of the Wollast
prism are nondispersive, then the interferogram is sim
translated a distanceD without distortion. In reality, the re-
fractive index of the sample and birefringence of the W
laston prism are both dispersive and the consequent varia
of zero path difference position with wave number intr
duces asymmetry into the sample interferogram and a no
nique definition ofD. It is, however, convenient to use
working definition thatD is the separation between the gra
maxima of the reference and sample interferograms.
spectral variation of the refractive index is calculated from
measurement of the phase shift,fL(s), experienced by each
spectral component of light as it propagates sequenti
through the Wollaston prism and sample. These phase s
are identical to the phase shifts of the equivalent spatial
quency components of the spatial interferograms as de
mined by Eq.~3!.

The complex insertion lossL̂(s) of the sample is equa
to the ratio

L̂~s!5L̂@v~s!#

5L@v~s!#exp$ ifL@v~s!#%5
FT21@ I S~x!#

FT21@ I o~x!#
~6!

of the complex inverse Fourier transforms of the sample
reference interferograms,I s(x) and I o(x), where

FT21@ I ~x!#5E
2X

1X

I ~x!exp@22p iv~s!x#dx ~7!

is the complex inverse Fourier transform of an interferogr
and the detector array extends from2X to 1X.

The phase ofL̂(s) is calculated in the usual way from
the arctangents of the quotient of the imaginary and r
parts of fL(s)$5fL@v(s)#%. Severe phase branching
avoided by separatingfL(s) into a gross shift that can b
associated with the relative displacementD of the grand
maxima of the two interferograms and a phasefL8(s) asso-
ciated with the difference between the dispersions of
sample refractive indexn(s) and the Wollaston prism bire
fringenceb(s). Rewriting Eq.~5! for this general case, we
obtain

n~s!511
2b~s!tan q

Mt S fL8~s!

2pv~s!
1D D . ~8!

In conventional DFTS, it is usual to record each inte
ferogram symmetrically about the respective grand max
and take these as the origins for calculation of the Fou
transforms. The analogous step in our instrument would
quire movement of the detector array and the consequ
introduction of a source of error. We have preferred inste
to apply the Fourier shift theorem to shift the origins of t
inverse Fourier transforms of each interferogram to the
sitions of their grand maxima.

A highly accurate value forD is not required~it is in any
case a weak function of the spectral distribution of t
source!, since a small error causes a compensatory freque
dependent shift in the phase offL8(s) so as to produce no
net effect in the calculation offL(s)4 . In Eq. ~8!, fL8(s) is
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the principal value of the phase difference between the
verse Fourier transforms of the sample and reference in
ferograms. If differential dispersion between the sample
the Wollaston prism birefringence is large, it may be nec
sary to replacefL8(s) by fL8(s)62mp, wherem is an in-
teger that accounts for phase branching. One may then
quirea priori knowledge of the approximate refractive inde
of the sample at one part of the spectrum in order to
equivocally obtain values form. One then assumes a smoo
variation in refractive index so that appropriate multiples
2p may be added or subtracted wheneverfL8(s) appears to
change discontinuously.

The spectral variation of the extinction coefficientk~s!
is obtained by applying Lambert’s law and multiplying by
factor that corrects for Fresnel reflections at the two surfa
of the sample:
e
i

na
S

e
ta
in
is
en
n

c-
an

a
lti
ro
an
p
u
o

he
,
if
on
ta
s.
-
r-
d
-

re-

-

f

s

k~s!5
1

2pst
lnS 4n~s!

~n~s!11!2

1

uL~s!u D . ~9!

Measurement of thick samples requires a calibrated comp
sation plate to be placed in the other arm of the interfero
eter~that is at the other source image point at the back fo
plane of the lens! so that the net path difference remai
within the range of the instrument. For example, in the d
termination of the optical constants of a thin film grown on
a substrate, the sample was positioned so that one of
optical components is transmitted sequentially through
substrate and the thin film and the other is transmit
through the substrate alone. To correct for the Fresnel refl
tions from the sample in both arms of the interferometer a
for attenuation in the substrate, one then uses
k~s!5
1

2pst
lnS 32nG

2 ~s!n~s!

@nG~s!11#3@nG~s!1n~s!#@n~s!11#

1

uL~s!u D
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22kG~s!
tG

t
, ~10!

wherenG(s)1 ikG(s) is the complex refractive index of th
substrate andtG is the substrate thickness. If the substrate
essentially transparent, then the second term in Eq.~10! is
equal to zero.

One fundamental difference between conventio
DFTS and static DFTS may be noted: in conventional DFT
the additional optical path length introduced by the sampl
compared with a free-space path length, whereas in s
DFTS the comparison is with the optical path difference
troduced by the birefringence of the Wollaston prism. D
persion in the birefringence of the Wollaston prism th
causes the sample interferogram to be asymmetrical eve
a nondispersive sample.

III. OPTICAL THROUGHPUT

The high optical efficiency of Fourier transform spe
trometers arises from the so-called Fellget multiplex adv
tage and the Jacquinot advantage.3 The first of these refers to
the fact that a Fourier transform spectrometer enables
transmitted flux to be detected without the temporal mu
plexing that reduces the optical efficiency of a monoch
mator. Although the static DFTS retains the Fellget adv
tage, so do modern dispersive spectrometers that also em
detector arrays to simultaneous detect all dispersed fl
However, it should be noted that whereas the instantane
spectral bandwidth of the static DFTS is limited only by t
optical components used and can exceed three octaves
fractive instruments are limited by higher orders in the d
fracted spectrum to unequivocal operation across just
octave. The second advantage, the Jacquinot advan
arises from the large e´tendue of two-beam interferometer
s
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Typically, a Michelson interferometer will exhibit an e´ten-
due 200 times greater than a diffractive instrument of eq
resolving power.3 We will now show that the e´tendue of a
static DFTS, although not as high as for some other tw
beam interferometers, is an order of magnitude higher t
for a diffractive instrument.

The étendue of an optical system is given by the produ
of the area of the input aperture and the solid angle field
view V. If we consider instruments with input apertures
equal area, the e´tendue of the conventional and static DFT
instruments can be compared by comparing fields of vie
The solid angle field of view of a conventional FTS isVM

52p/RM , where the resolving powerRM5sDmax andDmax

is the maximum path difference.3 The maximum useful an-
gular extension of the light source is that for which the pa
difference produced by the interferometer for the most
lique rays is a half wavelength different from the path d
ference for axial rays. As the angular extension of the lig
source is increased beyond this angle, power is subtra
from the interferogram and there is a consequent reductio
fringe visibility and effective optical throughput. Applying
the same criterion to the static DFTS, the maximum field
view subtended by the source at the Wollaston prism sho
be12

Chalf wave5A n0
2ne

sd~ne
22n0

2!
, ~11!

whered is the thickness of the Wollaston prism. Using E
~2!, the resolving power of the static DFTS can be written
RSDFTS5(n02ne)sd. Combining this with Eq.~11!, the
solid angle field of view of a static DFTS can then be writt
as
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VSDFTS,
pn0

2ne

RSDFTS~n01ne!
. ~12!

For most birefringent materials, this gives a solid angle fi
of view that is about 65% of that of a Michelson interferom
eter. This simple analogy is not rigorously valid since t
fringes formed by a Michelson interferometer at the detec
are circular, whereas, for the static DFTS, the birefringe
of the Wollaston prism results in fringes that vary hyperbo
cally with angle. A more rigorous analysis of this proble
yields a value forVSDFTS that differs by less than 14% from
that obtained using Eq.~12!.

For making dispersive measurements, two further fac
can limit the field of view: ~1! the requirement that the
source images in the back focal plane of the relay lens do
overlap and~2! the combined effect of low spatial coheren
at the detector with the curvature of the fringe image surfa
The first of these effects was mentioned in Sec. II and res
in the requirement that the source angular extensionC is less
than the Wollaston prism splitting anglew which may be
written as

Csplitting,
1

DsX
, ~13!

whereDs is the spectral resolution of the instrument andX is
the half width of the Wollaston prism.

The third limitation on field of view arises from the com
bined effect of the field curvature of the image surface a
the partial spatial coherence function of light at the detec
array ~which is a scaled version of the spatial coheren
function at the object plane within the Wollaston prism!.
Field curvature is a spatially varying longitudinal displac
ment between the Gaussian image surface and the det
plane. A simple geometrical argument shows that if the t
light rays interfering at the detector are traced back tow
the source, this longitudinal displacement,Dz, of the image
surface from the detector plane is equivalent to a shear

DxW5
2~n02ne!Dz tan q

M ~M2Dz/ f !
'

2~n02ne!Dz tan q

M2 ~14!

at the Wollaston prism. Field curvature therefore cause
reduction of fringe visibility for light of partial spatial coher
ence. From the van Cittert-Zernicke theorem, we can ca
late the mutual coherence function and hence the fringe
ibility from the source intensity distribution.14 For a circular,
incoherent, and uniform source subtending a half angleC at
the Wollaston prism, the fringe visibility for light of wave
numbers is

V52UJ1~2pCsDxW!

2pCsDxW
U, ~15!

whereJ1 is a first-order Bessel function. The visibility of th
fringe envelope therefore has its first zero when the inter
ing components are sheered by a transverse distanceDxg

51.22/2sC. For a simple lens, the longitudinal displac
ment of the curved image surface from the Gaussian im
plane at transverse displacementxI in the image plane is
Dz5xI

2/2nL f , wherenL is the refractive index of the len
d
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material.15 Combining this with Eqs.~14! and ~15! and re-
quiring that for temporally coherent illumination, the visibi
ity at the edge of the detector is greater than 0.5 yields
condition

Ccoherence,
2.215nL f M2

pXR
. ~16!

We now consider the relative severity of the limitin
fields of viewChalf wave, Csplitting, andCcoherencebased upon
typical system parameters. For a detector array withN pixels,
the maximum resolving power for Nyquist sampling of th
interferogram isN/4 so that for a 4096 element silicon de
tector with useable sensitivity between 10 000 and 25 0
cm21, we obtain a maximum resolving powerRSDFTS of ap-
proximately 1000 at high wave numbers and 400 at l
wave numbers. The resolution will be approximately
cm21 at all wave numbers. The maximum field of view o
the Wollaston prism is the high wave number value
Chalf wave which is 65 mrad. This is the limiting half-angl
source extension for nondispersive static Fourier transfo
spectroscopy.

We next consider the two additional limitations o
source extension particular to the application of static F
rier transform spectroscopy in its dispersive mode. Assum
that the Wollaston prism will have lateral dimensions simi
to that of the detector array, we can insert a typical value
14 mm forX into Eq. ~13! to give Csplitting'28 mrad.

To calculateCcoherence, we can assumeM'1 and nL

'1.5 to giveCcoherence'0.076f mrad. Thus provided the fo
cal length of the lens is greater than 371 mm,Ccoherencewill
be greater thanCsplitting. In conclusion, Ccoherence and
Csplitting are typically smaller thanChalf wavewhich limits the
solid-angle field of view to typically 12% of the field of view
of a DFTS based on a Michelson interferometer. For a Mi
elson interferometer, 50% of the flux is transmitted to t
detectors on average and for the static interferometer
scribed here, the use of polarizers limits the transmitted fl
to 25%. In principle, reflective polarizers could replace th
film polarizers and the reflected light could be used so a
give 100% optical efficiency for the static DFTS, but th
would incur considerable added~probably unjustifiable!
complexity. The overall optical throughput of the stat
DFTS is thus about 6% of that of a Michelson-based DFT
Conventional Fourier transform spectroscopy offers an e´ten-
due 200 times greater than a dispersive instrument3 so static
DFTS can be seen to offer an e´tendue this is at least an orde
of magnitude higher than a dispersive device as used
competing methods such as spectrophotometry or spe
scopic ellipsometry. Furthermore, because DFTS dire
measures the field transmitted through the sample rather
the optical intensity~that is, it is a homodyning rather tha
total-power technique!, a greater dynamic range is obtaine
from the detector.

IV. CALIBRATION OF ABERRATIONS

The algorithms described in Sec. II can be used to m
sure optical delay with an absolute accuracy of a few part
1000. Several systematic errors of about this relative ma
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tude are introduced by imaging aberrations and the n
normal incidence of the light transmitted through the samp
In this section we describe how systematic errors can
calibrated to give very significant reductions in the measu
uncertainty in optical delay.

A. Non-normal transmission through sample

It is apparent from Fig. 2 that light rays at some calib
tion wave numberscal arriving at the detector array at dis
placementx have a slope of tan21@x/M(scal) f (scal)# with re-
spect to the optical axis. This increases the effect
thickness of the sample. At a different wave numbers, chro-
matic aberration will introduce a small change in this an
to tan21$x/@M(scal) f (scal)1 f (scal)2 f (s)#%. Snell’s law re-
fraction within the sample means that for a sample of thi
ness t, oblique rays traverse a physical thickness in
sample equal to

tF11S x

n~s! f ~scal!M ~scal!1 f ~scal!2 f ~s! D
2G1/2

. ~17!

B. Imaging aberrations

The relay lens introduces a magnification that var
parabolically with both wave numbers and transverse dis
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placementx. To a first order, this variation may be accurate
described by

M ~x,s!>M ~0,speak!@12x~s2speak!
2#~11jx2!, ~18!

where x and j describe the degree of chromatic and ge
metrical distortion, respectively, and may be determined e
pirically. The valueM (0,speak) is the peak in the spectra
variation of magnification~at x50) that occurs ats
5speak. The dominant effect of this distortion is the tran
lation of the grand maxima of the reference and sample
terferograms.

C. Calibrated determination of optical constants

A more accurate calculation of refractive index may no
be obtained by substituting Eqs.~17! and ~18! into Eq. ~8!.
For accurate determination ofn(s), one must also include
the fact that the refractive index of air,nair(s), is slightly
greater than unity~about 1.0003 for green light!. Thus we
obtain
n~s!'nair~s!1
2b~s!tan q

tF11S xS

n~s! f ~scal!M ~scan!1 f ~scal!2 f ~s! D
2G1/2

M ~0,speak!@12x~s2speak8 !2#

3H 1

2pn
~fS2fO!1xS2xO1jF 1

2pn
~fSxS

22fOxO
2 !1xS

32xO
3 G J , ~19!
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where xS and xO denote thex coordinates of the grand
maxima of the sample and background interferograms,
spectively.

The refractive indices are calculated at a set of disc
wave numberssp that correspond to the spatial frequenc
vp obtained from the discrete Fourier transforms of t
sample and reference interferograms, wherep is an index
running from zero toN/2 andN is the number of pixels use
to sample the interferograms. It will be noticed that in E
~19! the refractive index also appears on the right-hand s
but since the refractive index will generally be smooth
varying, it is possible when calculatingn(sp), to substitute
one of the neighboring valuesn(sp61) into the right-hand
side without significant loss of accuracy.

The above corrections for the imaging distortion and
non-normal incidence are multiplicative and are at the le
of a few parts in one thousand for our demonstration syst
The magnitudes of both corrections are reduced by usin
longer focal length relay lens. The values ofx and j may
also be minimized by using imaging configurations in whi
image and object halves of the imaging system are sim
An example is the use of an achromatic triplet optimized
e-

te

.
e,

e
l
.
a

r.
r

and used in a 1:1 imaging conjugation. In principle, dist
tion and the chromatic variations of distortion are then
duced to zero.

V. CALIBRATION

Calculation of the optical constants using Eqs.~8!–~10!
requires the calibration of the birefringenceb(s), the wedge
angleq of the Wollaston prism, and a measurement of t
nominal magnificationM (0,s). More accurate calculation
using Eq.~19! requires the additional calculation of the co
stantsx, j, andspeak. For a broadband source, we are fac
with the recursive problem that the mapping of interferogr
spatial frequency to wave number can only be calculate
b(s) andM (0,s) are known, but these parameters are the
selves dependent on wave number. This problem has b
tackled by building an interpolated look-up table betwe
spatial frequency and equivalent wave number as follow

~i! Tabulated values of birefringence obtained from t
literature are used to derive an interpolating function t
enables the calculation of birefringence at arbitrary wa
numbers.
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~ii ! The Wollaston prism is replaced by a Ronchi grati
enablingM (0,s) to be measured at discrete wave numb
defined by interference filters. A least-squares quadratic fi
this data enablesx, speak, andM (0,speak) to be calculated.

~iii ! The spectrometer is illuminated by light from a c
herent reference source such as a helium neon laser. A l
squares fit to the spatial frequency chirp of the interferogr
enables the calculation of the distortion parameterj.

~iv! The spatial frequency of fringesvcal is measured for
the reference source of wave numberscal.

We are now able to evaluate a calibration constant

b5
12x~speak2scal!

2

b~scal!

ncal

scal
, ~20!

which from inspection of Eqs.~3! and ~12! may also be
written as

b5
2 tanq

M ~0,speak!~11j2x!
. ~21!

Combining Eqs.~3!, ~20!, and~21! yields the expression

n~s!5
b~s!

12x~s2speak!
2 bs ~22!

for the spatial frequency of fringes formed by light of wa
numbers. The need for accurate determination of the ab
lute value ofM (0,speak) andq is thus obviated.

A look-up table of valuessp is calculated by interpola
tion of Eq.~22! for all discrete values ofnp5p/Nd, whered
is the pitch of the detector array,N is the number of pixels in
the array, andp runs from zero toN/2. We can now write

sp5Y ~p!, ~23!

where Y represents the look-up function. Periodic calibr
tion of the instrument consists simply of the recalculation
b from the measurement in step~iv! above to allow for ther-
mal drift of the spectrometer. For uniform illumination of th
Wollaston prism, the transverse variation in magnificat
has no effect on the value ofb.

VI. ERRORS

Systematic errors in the determination ofs andn(s) are
dominated by the following uncertainties:

~i! Tabulated values of birefringenceb(s) for the com-
mon birefringent materials can be found in the literature w
typical uncertainties of the order of 1 part in 103. The abso-
lute value of birefringence at any one wave number is
important since it is absorbed into the calibration constanb.
Of greater importance is the relative spectral variation
birefringence with respect to a reference value at wave n
berscal and this may be calibrated with an accuracy of ab
1 part in 105.

~ii ! For most materials, birefringence changes by abo
part in 104 per °C of temperature drift.

~iii ! If the determination of the thickness of a sample c
be made with an accuracy of about 1 nm, this will introdu
an error of 1 part in 105 for a 100mm thick sample and 1 par
in 103 for a 1 mm thick sample.
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~iv! The calibration factorsx andj can be measured with
a repeatability of about 1 part in 102. This corresponds to a
worst case maximum error of less than 1 part in 105 in the
calculation of refractive index.

~iv! The calibration factorb can be measured with
repeatability of approximately 1 part in 105.

For thin ~1 mm! samples, the absolute uncertainty
n(s) is clearly dominated by the uncertainty in samp
thickness. For thick~100mm! samples, the uncertainty in th
spectral variation of the birefringence dominates. Calibrat
of this latter effect by accurate measurement of the spec
variation of n(s) enables the determination ofn(s) to be
made with an absolute uncertainty of about 1 part in 105 for
thick samples and 1 part in 103 for thin samples. Drift in
temperature of about 0.1 °C between calibration and m
surement will introduce additional errors of about 1 part
105.

For some applications, it is the repeatability of a me
surement that is of greatest importance. The dominant li
tations on repeatability arise from two main effects; tempe
ture drift of the Wollaston prism as described above a
electrical noise on the detector output. Simultaneous calib
tion using a spectral reference such as a laser can reduc
error due to temperature drift to below the fundamental lim
determined by noise on the detector output. This limit
considered next.

Fourier transformation of the measured interferogr
signal gives a frequency spectrum accompanied by bro
band noise that arises from fixed pattern noise in the op
and random detector noise. Each spectral component in
spectrum of the detected interferogram can be considere
a sum of three electrical phasors; a pure stationary ca
signal representing the noise-free interferogram, a fixed
tern noise phasor and a noise phasor with random phase
tributed uniformly in the interval2p to 1p, and an ampli-
tude with a stochastic variation determined by the no
character. The resultant phasor suffers both amplitude
phase modulation by the random noise. For large signal
noise ratios, the resultant uncertaintyDf in the phase is
given by16

Df25
N0

2S
, ~24!

whereN0 /S is the ratio of the electrical noise power to th
electrical signal power in one resolution bandwidth. The fa
tor of two arises because on average, only half of the no
power contributes to phase modulation of the signal~the
other half contributes to amplitude modulation!. Transmis-
sion of light of wave numbers through a sample of thick-
nesst changes its phase with respect to vacuum propaga
by an amountf52ps(n21)t. Differentiating f with re-
spect ton and combining this with Eq.~24! gives the pre-
dicted uncertainty in the determination of refractive ind
due to random additive noise to be

Dn~s!5
1

2pst
AN0@n~s!#

S@n~s!#
. ~25!
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For a typical electrical signal-to-noise ratio of 40 dB a
a broadband optical spectrum, Eq.~25! gives a typical uncer-
tainty of 1024 for thin samples and 1026 for the thickest
samples that can be measured simply by the DFTS descr
here. In terms of the determination of optical thickness, t
suggests a noise equivalent error of the order of a nanom
in each spectral resolution bandwidth which is comparabl
the assumed absolute accuracy with which the sample c
be measured. If the complete spectrum is used to calcu
sample thickness, then this figure would be further redu
by the weighted square root of the effective number of m
surements which provides the potential to measure displ
ment with a repeatability measured in picometers. It may
always be necessary to independently measure sample t
ness, since, as is mentioned in the next section, it is poss
to simultaneously determine refractive index and thickn
using DFTS.

Uncertainties in the absolute measurement ofk~s! arise
when the differences between sample and reference in
ferograms are not due solely to Fresnel reflections at
sample surfaces and absorption within the sample. Sev
systematic factors are common to recording both the sam
and reference interferograms and so cancel when the
L̂(s) in Eq. ~6! is calculated. These include fixed patte
noise in the optics and at the detector, the detector MTF,
spectral transmission of the optical components, and
spectral responsivity of the detector. Factors that can in
duce uncertainty ink~s! are those that are not common
both interferograms and include the optical quality a
cleanliness of the sample, stability of the source intens
spectral stability of the optical transmission path, and sta
ity of detector responsivity. These sources of error do
lead to a simple and general theoretical analysis and are
considered here in detail.

However, for a transparent samplek~s! is equal to zero
and this is the value that should be measured after correc
of the Fresnel losses calculated from the measured varia
of refractive index. Thus an indication of the accuracy of t
measured value ofk~s! can be estimated by the closeness
zero of the measured value for an ostensibly transpa
sample. As shown in the next section, the static DF
yielded values fork~s! in the transparent regime that, for
thick sample, were typically less than 1024 with random
variations from the mean less than 1025.

VII. EXPERIMENTS

Two proof-of-principle measurements of complex r
fractive indices that demonstrate the application of sta
DFTS are presented in this section. The first is for a thin fi
of ZnSe grown onto a glass substrate by molecular be
epitaxy and the second is for a free-standing Melinex fi
The experimental details are described below.

The Wollaston prism is fabricated from calcite and ha
wedge angle ofq52.5° and a width of 20 mm. Ideally, th
relay lens, which is a 125 mm focal length, achromatic trip
optimized for finite conjugate imaging, would be used
unity magnification since this configuration yields zero d
tortion. However, we chose a magnification of approximat
ed
s
ter
to
ld
te
d
-
e-
t

ck-
le
s

er-
e

ral
le
tio

e
e

o-

,
l-
t
ot

on
on
e

nt
S

c

m
.

a

t
t
-
y

1.5 to match the 28.672 mm wide detector array to the im
of the Wollaston prism and this introduced a small amoun
pincushion distortion. The spectral and transverse variati
in the imaging magnifications were calibrated using t
methods described in Sec. V. A least-squares fit to the s
tral variation of magnification gave a value ofx51.3
310210 cm2 resulting in a maximum variation of less tha
0.5% across the spectral range. A value ofj51.2
31025 mm22 was measured for the distortion parame
which translates to a maximum distortion of 0.24% in d
placement and 0.74% in spatial frequency at the edge of
detector.

The Wollaston prism used introduces a maximum p
difference of6150mm yielding a full width half maximum
resolution of 60 cm21. The resulting Nyquist sampling crite
rion requires the high wave number cutoff to be less th
67 000 cm21 and this is ensured by the 25 000 cm21 high
wave number cutoff of the silicon CCD detector array. T
low wave number cutoff of 9000 cm21 is also determined by
the spectral responsivity of the detector. The linear dete
array was a 2048-element CCD array that is interfaced v
13-bit analog-to-digital converter to a personal comput
The temporal resolution was limited to a maximum fram
rate of 30 Hz by the 100 kHz maximum sample rate of t
analog-to-digital converter. At these frame rates real-ti
calculation of optical constants is possible using a mod
computer.

Calculating the maximum half-angle fields of view give
by Eqs. ~12!, ~13!, and ~16!, the maximum angular sourc
extensions at s525 000 cm21 are Chalf wave557 mrad,
Csplitting512 mrad, andCcoherence534 mrad. That is to say
that for this proof-of-principle system, the source extens
is limited to 12 mrad by the necessity to separate the ima
of the source at the sample location. The optical source
an optically attenuated 50 W quartz halogen lamp stop
down to give source half-angle extensions of typically 0
mrad. We estimate that for an optimized instrument, sim
measurements could be made with less than 10% of
optical power.

The fringe visibility for these measurements was calc
lated to be reduced by no more than 1% at the extreme
the linear detector array and for the actual locations of
sample and reference interferograms, was less than 0
Although it is possible in principle to calibrate the effects
reduced fringe visibility to give more accurate determinati
of sample absorption, the exact calibration is complicated
the dependence of the visibility function on the detail
source intensity distribution. The fringe visibilities for th
demonstration measurement are so close to unity that
bration does not significantly improve accuracy.

Two interferograms are recorded for each sample
reference interferogram:I 1(x) with the input polarizer ori-
ented at145° andI 2(x) with the input polarizer oriented a
245°. Calculation of the normalized interferogram,I (x)
5@(I 2(x)2I 1(x)#/@(I 2(x)1I 1(x)#, results in the subtrac
tion of the interferogram bias, attenuation of fixed patte
noise~by 26 dB in the electrical domain for this experimen!
and reduced sensitivity to nonuniform illumination of th
Wollaston prism 8. If unnormalized interferograms are us
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and there is a change in source intensity between recor
sample and reference interferograms then the value ofuL(s)u
used in Eqs.~9! and ~10! would be scaled by the intensit
change leading to a systematic error ink~s!. Use of normal-
ized interferograms reduces this sensitivity, although
magnitude of this improvement is dependent upon the r
tive time scales of lamp intensity variations and the interv
between recording the four interferograms.

The thin film sample measured was a 4.88mm thick
layer of ZnSe grown by molecular beam epitaxy onto a
mm thick glass substrate. The thin film was surrounded b
border on which no thin film was grown. The sample w
positioned in the back focal plane of the relay lens so that
reference light channel passed through the border~and thus
through the glass substrate only! and the sample channe
passed through the glass substrate and the ZnSe thin fil
sequence. On the assumption that the glass substrate
uniformly flat, the glass border in the reference channel co
pensated for the glass in the sample channel. Normal
sample and reference interferograms were recorded with
sample in place and with it absent and these are show
Fig. 4.

Second-order interference caused by double reflec
within the ZnSe film is apparent in the sample interferogr
at a displacement of 2.5 mm to the left of the grand ma
mum. Although these second-order interference effects
able the sample thickness to be calculated,17 this was not
done here and the second-order interferogram was rem
by manual editing prior to Fourier transformation.

The real and imaginary refractive indicesn(s) andk~s!
calculated from the data of Fig. 4 are shown in Fig. 5. T
optical constants of ZnSe have been measured previous
spectroscopic ellipsometry of single crystals18 and of thin
films grown by MBE.19 Measurements ofn(s) taken from
Fig. 5 of Ref. 18 are superimposed in Fig. 5 and show
cellent agreement~within the accuracy of the transcription o
the data from the graph!.

The imaginary part of the refractive index,k~s!, is
shown to be ostensibly zero between the low wave num

FIG. 4. Sections of the reference and sample interferograms for the
surement of a 4.88mm thick thin film of ZnSe. Interference effects due
second-order reflection within the ZnSe film are evident on the sample
terferogram at 17 mm.
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limit of the measurement at 10 400 and 20 500 cm21 apart
from a small monotonic increase with wave number wh
which is probably due to scattering from surface defects
contamination. A slight peak of 0.003 ink~s! is apparent at
19 300 cm21 and coincides with an increase of 0.003 abo
the general trend ofn(s) at the same wave number. Th
may be due to a weak resonance in this sample of ZnSe.
feature is not apparent in a previous report on the opt
constants of ZnSe18 since it falls between the much mor
widely spaced data points in that article. Above 20 5
cm21, k~s! rises rapidly to about 0.03 at 20 800 cm21 cor-
responding to 2% transmission by the sample which is eq
to the system dynamic range at this wave number. The
tem dynamic range drops off sharply with increasing wa
number due to the diminishing output of the quartz-halog
lamp and the falling sensitivity of the silicon detector so th
optical transmission by the thin film beyond 20 800 cm21 is
below the noise floor. This absorption feature is due to
transition in the energy band structure of ZnSe at 2.69
that results in a peak value ink~s! of approximately 0.37 at
21 700 wave numbers.18 For optically thick and opaque re
gions of the spectrum such as this, reflection DFTS is m
appropriate.4

Measurements have also been made on a free-stan
film of Melinex @the ICI brand name for poly~tetraphtha-
late!#. DuPont manufacture a similar, though not identic
poly~tetraphthalate! film under the brand name of Mylar. Th
Melinex film was measured mechanically to have a thickn
of 105.760.5mm. The measurement of a free-standing fi
such as this is more straight forward than for a suppor
film since no allowance need be made for the effects o
substrate.

The calculated optical constants of the Melinex film a
shown in Fig. 6. The magnitudes of these results are q

a-

n-

FIG. 5. Real and imaginary components of ZnSe refractive indices as m
sured by static DFTS. The open circles show the measurements transc
from Fig. 5 of Ref. 18.

FIG. 6. Measured refractive indices of a free-standing film of Melinex
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dissimilar from results published for Mylar.20 This is not
unexpected since Mylar and Melinex are not identical~for
example, Mylar is birefringent whereas Melinex is not! and
there can in any case be significant sample-to-sample v
ability of the optical constants of nominally identic
polymers.21

The low wave number limit of the Melinex measureme
is similar to that obtained for the ZnSe sample, but due to
greater high wave number transparency of Melinex, the h
wave number measurement limit is extended to the sys
cutoff at 23 400 cm21.

In all of the optical intensity spectra recorded with t
static DFTS, a channeled-spectrum modulation was appa
on the continuum. This is believed to be due to etalon effe
within either the detector or film polarisers. In these expe
ments, thermal drift of the channeled-spectrum between
cording interferograms has resulted in channeled-spect
artifacts on thek~s! curves shown in Figs. 5 and 6. Th
amplitude of these artefacts is about 1023 for the ZnSe mea-
surement and 1024 for the Melinex measurement. In prin
ciple, these systematic errors can be avoided by thermal
bilization. There is no significant related effect on the curv
for n(s). Random noise on the traces ofk~s! are approxi-
mately 231024 for the measurement of ZnSe and 1025 for
the measurement of Melinex.

Random noise on then(s) curves is due to random
noise on the detector output and its magnitude, as predi
by Eq.~25!, increases toward the spectral extremes where
signal-to-noise ratio is poorer. The signal-to-noise ratio
the sample spectra reaches a maximum of 40 dB~electrical
domain! close to 13 000 cm21 and the random variation in
n(s) at this point is 2.431024 for ZnSe and 1.531025 for
Melinex. This corresponds to 1 part in 104 and 1 part in 105,
respectively, and is in agreement with the expected rand
errors predicted by Eq.~25!.

VIII. DISCUSSION

The static DFTS as described offers several advanta
over conventional approaches to static DFTS and has b
patented22 with the intention of developing a commercia
general purpose instrument. The instrument is made pos
by the availability of high quality linear detector arrays, b
the specifications of the available arrays is a limiting fact
In particular, the maximum thickness of sample that can
measured is limited to the displacement of the interferogr
that can be measured and this is determined by the numb
pixels available. For a 2048-element array, the maxim
thickness of a sample with that can be measured is 1
when the refractive index is 2 and the wavelength is 1mm.
Several methods can be conceived for increasing the th
ri-
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ness range, such as using calibrated compensation pl
contiguous linear arrays, or two-dimensional arrays with c
tom designed birefringent prisms.

Additional limitations due to detector arrays are t
maximum pixel rate~which typically limits the temporal
resolution to about 100ms! and high cost for operation out
side of the sensitivity range of silicon. For some applicatio
such as process control and thickness monitoring that do
require a general purpose instrument, it may be attractiv
employ optical masks and integrating detection not unl
the Van der Lugt correlators used in Fourier optics.22 This
offers scope for cost reductions, improvements in tempo
resolution, and improved sensitivity, but with the loss of t
flexibility provided by electronic processing.

ACKNOWLEDGMENTS

The author is grateful to M. J. Padgett of the Univers
of St. Andrews, U.K. for useful discussions. This resea
was supported by the U.K. Ministry of Defence.

1See, for example, E. D. Palik,Handbook of Optical Constants of Solid
~Academic, London, UK, 1985!.

2J. Chamberlain, J. E. Gibbs, and H. A. Gebbie, Infrared Phys.9, 185
~1969!.

3R. J. Bell,Introductory Fourier Transform Spectroscopy~Academic, New
York, 1972!, Chap. 8.

4J. R. Birch and T. J. Parker, inInfrared and Millimetre Waves, edited by
K. J. Button~Academic, New York, 1979!, Vol. 2, Chap. 3.

5T. J. Parker, Contemp. Phys.31, 335 ~1990!.
6N. J. Burton and T. J. Parker, J. Mod. Opt.36, 1103~1989!.
7M. J. Padgett, A. R. Harvey, A. J. Duncan, and W. Sibbett, Appl. Opt.33,
6035 ~1994!.

8A. R. Harvey, M. Begbie, and M. J. Padgett, Am. J. Phys.62, 1033
~1994!.

9M. J. Padgett and A. R. Harvey, Rev. Sci. Instrum.66, 2807~1995!.
10H. J. Caulfield, inAdvances in Holography, edited by N. S. Farhat~Marcel

Decker, New York, 1976!, Vol. 2, pp. 141–184.
11J. Courtial, B. A. Patterson, W. Hirst, A. R. Harvey, A. J. Duncan, W

Sibbett, and M. J. Padgett, Appl. Opt.36, 1901~1997!.
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