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Abstract—In this paper, we explore the statistical charac-
terization of Multiple-Input Multiple-Output (MIMO) channel
correlation matrices with the main focus being on their condition
number statistics. More specifically, novel expressions are derived
for the probability density function (PDF) and cumulative distri-
bution function (CDF) of the MIMO condition number. Contrary
to the majority of related studies, where only the common case
of Rayleigh fading was considered, our investigation is extended
to account for the generalized case of Ricean fading where a
deterministic Line-of-Sight (LoS) component exists in the com-
munication link. The overall analysis is based on the principles
of random matrix theory and particularly of dual complex non-
central Wishart matrices; the latter represent a practical class of
MIMO systems, namely dual-branch systems which are equipped
with two transmit and receive antenna elements. All the derived
formulae are validated through extensive simulations with the
attained accuracy being remarkably good.

Index Terms—MIMO systems, non-central Wishart matrices,
condition number, Ricean fading.

I. INTRODUCTION

IT is an indisputable fact that, nowadays, Multiple-Input
Multiple-Output (MIMO) systems are considered as a hot

topic in the area of wireless communications. The pioneer-
ing works of Foschini [1] and Telatar [2] demonstrated the
extensive performance enhancement when multiple antenna
elements are used at both ends of a radio link. While a
considerable amount of research effort has been devoted to the
study of MIMO technology, there are still some open aspects
that have not been addressed. One of the most interesting
topics is the eigenanalysis of the MIMO correlation matrix
and especially the statistical determination of its condition
number, commonly defined as the ratio of the largest to the
smallest eigenvalue. In the MIMO context, the condition num-
ber indicates the multipath richness of the channel [3] and has
also been shown to drastically affect the detection and error
performance in spatial multiplexing (SM) systems [4], [5].
Hence, a detailed knowledge of the condition number statistics
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is highly desirable since it will offer a deeper insight into the
efficient characterization of the promising MIMO technology.
We point out that throughout the paper our main interest lies
in dual-branch (or simply dual) MIMO configurations which
are expected to be employed in the majority of future practical
systems (e.g. hand-held devices), thanks to their small size and
low complexity/implementation cost.

In order to conduct the above mentioned analysis, we have
resorted to the use of complex Wishart matrices which have
recently attracted considerable interest following the rapid
development of MIMO systems. Most studies dealing with
the application of Wishart matrix theory on MIMO systems
elaborate on the common case of a rich scattering environment
where no Line-of-Sight (LoS) component is present and the
inter-element spacings are assumed to be sufficiently high;
under these conditions, the entries of the channel matrix
exhibit uncorrelated Rayleigh fading [1], [2], [6] and in
practice we end up with the simplified case of complex central
(zero-mean) Wishart matrices. The presence of a specular
wavefront or a strong direct component though, violates the
assumption of Rayleigh fading and the channel is said to be
Ricean distributed instead. Surprisingly, despite their practical
relevance, few results have been reported focusing on the
eigenstatistics of Ricean channels. This fact can be attributed
to the difficulty in manipulating hypergeometric functions
with two matrix arguments of non-central Wishart matrices
compared to the one matrix argument of central Wishart
matrices [7].

With regard to the condition number statistics, we primarily
recall the seminal work of Edelman [8] which revealed the
vital importance of the condition number as a metric of the
matrix ill-condition. However, his analysis was limited to the
case of (2 × 2) central Wishart matrices with unit variance
where the generalized work of Ratnarajah et al.[9] accounted
for matrices of random size and with arbitrary variance. An
interesting approach to model the temporal transition proba-
bilities of the condition number using a finite-state Markov
process can be found in [10]; more importantly, it was shown
that the CDF of the logarithm of the condition number can be
approximated particularly well via a gamma variable. Yet, all
the above cited papers ([8]–[10]) were limited to Rayleigh-
fading MIMO channels while the extension to Ricean-fading
channels remains an open problem. On this basis, in the
present study we explore the statistics of the condition number
of a dual non-central Wishart matrix and introduce closed-
form formulae for its PDF and CDF as weighted sums of
polynomials. For the sake of completeness, two different
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cases are assessed with the classification being based on the
eigenvalues of the LoS matrix component (distinct or equal).
As potential applications of our theoretical analysis, we can
expect that it can facilitate the prediction of capacity and link-
level performance of MIMO channels as well as the design of
space-time codes and MIMO simulations.

The remainder of the paper is organized as follows: In
Section II, the fundamental properties of the theory of Wishart
matrices are outlined. In Section III, new expressions for the
condition number distributions are derived. In Section IV,
the underlying MIMO Ricean channel model used throughout
the paper is discussed followed by the numerical results
as obtained by Monte-Carlo simulations. Finally, Section V
concludes the paper and summarizes the key findings.

A note on notation: We use upper and lower case boldfaces
to denote matrices and vectors, respectively while C will
denote the set of complex-valued numbers. The nomenclature
∼ CN (X,Y) stands for a complex normally distributed
matrix with mean X and covariance Y. An (n × n) identity
matrix is expressed as In while the all-zero (n×m) matrix as
0n×m. The symbols (·)H and (·)−1 correspond to Hermitian
transposition and matrix inversion whereas ⊗ is the Kronecker
product. Finally, det(·) and ‖·‖F respectively return the matrix
determinant and Frobenius norm.

II. NON-CENTRAL WISHART MATRICES

As was previously highlighted, we are particularly inter-
ested in dual complex non-central Wishart matrices. In such a
case, a (2×2) complex normal random matrix H is considered
which is distributed according to H ∼ CN (M,Σ ⊗ I2). The
matrix Σ = σ2I2 is the correlation matrix containing the
variances σ2 of the entries of H on its main diagonal. The
so-called instantaneous MIMO correlation matrix is defined
as W̃ = HHH and is said to follow the complex non-central
Wishart distribution with two degrees of freedom and non-
centrality matrix Ω = Σ−1MMH , commonly denoted as
W̃ ∼ CW2(2,Σ,Ω)1.

We now consider a scaled version of W̃, that is W =
Σ−1W̃. Since W is a (2 × 2) Hermitian matrix, it has two
real ordered eigenvalues w1 > w2 > 0, whose joint PDF is

f(w1, w2) = exp

[
−

2∑
i=1

(λi + wi)

]
0F̃1 (2; λ,w) (w1 − w2)2

(1)

where λ = (λ1, λ2) contains the real ordered eigenvalues of
Ω and, in turn, w = (w1, w2); moreover, 0F̃1(.; ., .) is the
complex hypergeometric function of two matrix arguments [7].
A convenient version of 0F̃1 (2; λ,w) for the dual case was
given by Gross and Richards [11] as

0F̃1 (2; λ,w) =
det (0F1 (1; wiλj))
(λ1 − λ2)(w1 − w2)

(2)

with Iq(·) denoting the qth order modified Bessel function of
the first kind while 0F1(s + 1; x) is the classical hypergeo-
metric function [12]

0F1(s + 1; x) = s!x−s/2Is

(
2
√

x
)
. (3)

1It should be noted that if M = 02×2 so that Ω = 02×2, a complex
central Wishart matrix is obtained, expressed as W̃ ∼ CW2(2, Σ).
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Fig. 1. Capacity evolution as a function of the condition number (SNR =
20 dB).

III. STATISTICS OF THE CONDITION NUMBER OF W

It is well established that the condition number is a metric
of the channel rank or of how invertible a given matrix is;
a condition number close to one indicates a well-conditioned
matrix with almost equal eigenvalues. As the condition number
gets larger though, the matrix rank drops and eventually
degenerates into a rank-one matrix. Its importance in the area
of MIMO communications has been demonstrated in [3]–[5]
among others. In the considered case, the condition number
of the scaled MIMO correlation matrix W becomes

z =
w1

w2
≥ 1. (4)

From an information theory point of view, the impact
of the condition number on MIMO capacity can be seen
in (5), which returns the instantaneous channel capacity (in
bits/s/Hz) assuming perfect channel knowledge at the Rx and
no knowledge at the Tx and uniform power allocation [1]

C = log2

(
det

(
I2 +

ρ

2
HHH

))
= log2

((
1 +

zw2

α

)(
1 +

w2

α

))
(5)

where ρ is the system Signal-to-Noise ratio (SNR) and α =
2(1 + K)/ρ. The symbol K stands for the the Ricean K-
factor, normally expressing the ratio of the free-space signal
power to the power of the scattered waves. From (5), it is
evident that there is no analytical one-to-one mapping between
MIMO capacity and the condition number. However, their
inter-dependency can be numerically evaluated; in Fig. 1, this
inter-dependency is illustrated for an SNR of 20 dB2.

This graph verifies the notion that high-rank channels, or
low condition numbers, yield high capacities and vice-versa.
To get a deeper understanding, the density and distribution
functions of the condition number are now studied for two
different cases; the distinction is based on the associated LoS
eigenvalues and, in particular, on whether these are identical.

2A more detailed discussion on the simulation settings is provided in
Section IV.
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1) Case 1 (λ1 �= λ2): We firstly consider the common
case of two distinct non-zero LoS eigenvalues λ1 > λ2

which reflects any conventional MIMO configuration with no
constraint on the rank of the LoS channel matrix. We can show
that the PDF of z, fz(z), can then be expressed as a weighted
summation of polynomials given by

fz(z) =
e−(λ1+λ2)(z − 1)

λ1 − λ2

∞∑
k=0

∞∑
n=0

Γ(k + n + 3)zk

(k!n!)2(z + 1)k+n+3

×
[
λk

1λn
2 − λk

2λn
1

]
(6)

with Γ(n) denoting the Gamma function which, for the case
of an integer index, can be rewritten as Γ(n) = (n− 1)!. The
full proof of (6) is provided in Appendix A.

In order to reduce the high computational complexity in-
serted by the infinite double summation of the above equation,
a truncated finite subset of terms may be considered as

fz(z) ≈ e−(λ1+λ2)(z − 1)
λ1 − λ2

Ks∑
k=0

Ns∑
n=0

Γ(k + n + 3)zk

(k!n!)2(z + 1)k+n+3

×
[
λk

1λn
2 − λk

2λn
1

]
. (7)

The values of Ks and Ns are chosen so that a further
increase in the number of coefficients holds negligible impact
on the final outcome (less than 0.5% between consecutive
steps). It was empirically found that to fulfill this prerequisite
with the minimum number of terms, Ks and Ns should be
set to the same value. In fact, by adopting this approach the
asymptotic result is approximated well with Ks = Ns = 20.
This observation is verified in Fig. 2, where the evolution of
the double summation against the number of terms Ks, Ns is
depicted, for four arbitrary values of z.

The corresponding CDF of z, Fz(x), can then be deduced
via the PDF as

Fz(x) =
∫ x

1

fz(z)dz. (8)

By substituting (6) into (8) and taking into account the
Dominated Convergence Theorem which states that sum-
mation and integration can be interchanged, Eq. (9) at the
top of the next page is obtained after some basic algebraic
manipulations. For the integrals involved in (9), a tractable
representation in terms of scalar hypergeometric functions is
available in [12, Eq. (3.194)]∫ u

0

tμ

(1 + bt)ν
dt =

uμ+1

μ + 12F1(ν, μ + 1; μ + 2;−bu) (10)

where 2F1(α, β; γ; u) is the classical Gaussian hypergeometric
function defined in [12, Eq. (9.14)]. The CDF of the condition
number eventually becomes

Fz(x) =
e−(λ1+λ2)

λ1 − λ2

∞∑
k=0

∞∑
n=0

Γ(k + n + 3)
(k!n!)2

[
λk

1λn
2 − λk

2λn
1

]
×

{
Ik+1,k+n+3
1 (x) − Ik,k+n+3

1 (x)
}

(11)
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Fig. 2. Convergence of the double summation in (6) for four different values
of z.

where

Ia,b
1 (y) =

(
ya+1

a + 1

)
2F1(b, a + 1; a + 2;−y)

−
(

1
a + 1

)
2F1 (b, a + 1; a + 2;−1) . (12)

2) Case 2 (λ1 = λ2): This is a special class of specifically
designed full-rank LoS configurations with extensive practical
interest since it offers two equal eigenvalues and thus delivers
high capacities in the presence of strong direct components.
This is achieved with appropriate positioning of the antenna
elements at both ends of the link so that subchannel orthog-
onality is attained [13]–[15]. This phenomenon is contrary to
the common belief that LoS channels represent a hindrance in
the area of MIMO communication since they are usually rank-
deficient and therefore have only one non-zero eigenvalue.
In the case of equal eigenvalues though, the (λ1 − λ2) term
in the denominator of (2) becomes zero making the analysis
invalid; in order to circumvent this singularity we employ de
l’Hôpital’s rule to get a solution for the limit (λ1 → λ2). Then,
the ordered eigenvalue distribution f(w1, w2) becomes [13]

f(w1, w2) = λ
−1/2
1 e−2λ1(w1 − w2)e−(w1+w2)

×
(√

w1I1

(
2
√

λ1w1

)
I0

(
2
√

λ1w2

)
−√

w2I1

(
2
√

λ1w2

)
I0

(
2
√

λ1w1

))
. (13)

In Appendix B, it is shown that the PDF of the condition
number has the following form

fz(z) = e−2λ1(z − 1)
∞∑

k=0

∞∑
n=0

Γ(k + n + 4)
(k!n!)2(k + 1)(z + 1)k+n+4

×
(

zk+1 − zn

)
. (14)

The similarity between the infinite double summations
involved in (6) and (14) is apparent and hence the finite
subset approximation can be used again. In this case, a similar
convergence check, as the one performed for (7), revealed
that the choice Ks = Ns = 15 approximates the asymptotic
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Fz(x) =
e−(λ1+λ2)

λ1 − λ2

∞∑
k=0

∞∑
n=0

Γ(k + n + 3)
(k!n!)2

[
λk

1λn
2 − λk

2λn
1

]
×

{∫ x

0

zk+1

(z + 1)k+n+3
−

∫ 1

0

zk+1

(z + 1)k+n+3
−

∫ x

0

zk

(z + 1)k+n+3
+

∫ 1

0

zk

(z + 1)k+n+3

}
. (9)

solution reasonably well. As far as the condition number CDF
is concerned, the concept for deriving an analytical expression
is exactly the same as in (8)–(12). Thus, it is trivial to show
that for the case of equal LoS eigenvalues the condition
number CDF is

Fz(x) = e−2λ1

∞∑
k=0

∞∑
n=0

Γ(k + n + 4)
(k!n!)2(k + 1)

×
{

Ik+2,k+n+4
1 (x)

− In+1,k+n+4
1 (x) − Ik+1,k+n+4

1 (x) + In,k+n+4
1 (x)

}
.

(15)

IV. MIMO CHANNEL MODEL AND NUMERICAL RESULTS

The underlying MIMO channel model is now presented
for the case of LoS propagation. For an uncorrelated fading
scenario, the channel transfer function matrix H ∈ C2×2

consists of a spatially deterministic component HL and a
randomly distributed component HW which accounts for the
scattered signals. Then, the channel model is

H =

√
K

K + 1
HL +

√
1

K + 1
HW. (16)

A common policy in the analysis of MIMO systems is to
normalize the entries of H so that they have unity energy on
average and the mean SNR is independent of the channel ma-
trix. For this reason, HW is modeled as a Rayleigh distributed
matrix with independent and identically distributed (i.i.d.) cir-
cular symmetric zero-mean complex Gaussian variables with
unity variance. With regard to the free-space LoS component
HL, its entries can be expressed as e−jkdm,n/dm,n, where
k = 2π/λ is the wavenumber corresponding to the carrier
wavelength λ and dm,n is the distance between a receive
element m ∈ {1, 2} and a transmit element n ∈ {1, 2}. Please
note that we have assumed, without loss of generality, isotropic
radiators. Regarding the statistical characteristics of H, it can

be inferred that M =
√

K
K+1HL while Σ = 1

K+1I2. Then, it

is trivial to show that the Wishart matrix W̃ = HHH follows
the distribution W̃ ∼ CW2

(
2, 1

K+1I2, KHLHH
L

)
and the

associated LoS version of interest W = (K + 1)W̃.
We can now validate the theoretical analysis presented in

Section III through a set of simulations. For the sake of brevity,
we consider the more general case of unequal LoS eigenvalues
but all the presented results are readily extensible to the case
of full-rank LoS configurations. Due to space limitations,
we directly consider the LoS suboptimum configuration, as
originally given by the authors in [16, Eq. 20], with

HL =
[

0.8384 + j0.5451 0.9411 + j0.3380
−0.5123− j0.8588 0.8384 + j0.5451

]
. (17)

This matrix satisfies the power constraint, i.e. ‖HL‖2
F = 4.

After generating 50,000 random Monte-Carlo realizations of
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Fig. 3. Condition number PDF and CDF of a dual complex non-central
Wishart matrix.

the channel matrix H according to (16) and setting the K-
factor equal to 5 dB, the ordered eigenvalues of Ω were
easily computed and thereafter concatenated into the vector
λ = (7.0336, 5.6155). As a main step of the performance
evaluation process, the analytical expressions derived for the
statistics of the condition number are validated. In Figs. 3(a)
and 3(b), the closed-form relationships (6) and (11) are
respectively tested, where it is easily seen that theoretical and
simulation results are in remarkable agreement for both cases.

From inspection of Fig. 1 and Fig. 3, we can also conjec-
ture that for a relatively high percentage of realizations the
proposed architecture yields large capacities and outperforms
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the common i.i.d. Rayleigh system which offers an ergodic
capacity of 11.4 bits/s/Hz for the same operating SNR. This
observation is consistent with the results presented in [13]–
[15] where different optimized architectures were proposed
for the case of near-field LoS propagation.

V. CONCLUSION

In the present contribution, a detailed statistical eigen-
analysis of dual-branch MIMO systems has been performed.
In detail, we derived the PDF and CDF of the condition
number of a dual complex non-central Wishart matrix. This
class of matrices has an increasing practical interest since
it corresponds to compact MIMO systems with two antenna
elements at both ends. The statistics of the condition number
were thoroughly explored for a conventional as well as a
specifically designed full-rank configuration with equal LoS
eigenvalues. All theoretical formulae were tested against the
outputs of a Monte-Carlo simulator and it was shown that the
match between theory and simulation is excellent. It should
be emphasized that all the analytical results presented in this
paper can be easily evaluated since the overall complexity
burden was kept as low as possible. More importantly, they
constitute the basis of the statistical assessment of Ricean
MIMO channels and further are very useful tools for deter-
mining numerous MIMO characteristics, spanning SM ability
to symbol error and detection performance.

APPENDIX A
DERIVATION OF THE PDF OF THE CONDITION NUMBER OF

W (λ1 �= λ2)
Starting with the joint eigenvalue PDF f(w1, w2), we apply

the following transformation of variables to estimate the
marginal pdf of the condition number z = w1/w2

fz(z) =
∫ ∞

0

w2f(zw2, w2)dw2. (18)

By substituting (1) into (18), the integral becomes

fz(z) = e−(λ1+λ2)(z − 1)2
∫ ∞

0

w3
2e

−w2(z+1)

0F̃1 (2; λ,w′) dw2 (19)

where w′ = (zw2, w2). If (2) is introduced in our analysis,
the following relationship is obtained

0F̃1 (2; λ,w′) =
det (0F1 (1; w′

iλj))
w2(λ1 − λ2)(z − 1)

(20)

which leads to a simplified version of (19)

fz(z) =
e−(λ1+λ2)(z − 1)

λ1 − λ2

∫ ∞

0

w2
2e

−w2(z+1)

det (0F1 (1; w′
iλj)) dw2. (21)

For the dual case, (3) reduces to 0F1(1; x) = I0 (2
√

x); thus,

fz(z) =
e−(λ1+λ2)(z − 1)

λ1 − λ2

∫ ∞

0

w2
2e

−w2(z+1)

det
(
I0

(
2
√

w′
iλj

))
dw2. (22)

We can now evaluate (22) as shown in (23) in the next page.
To the best of our knowledge, there is no analytical solution

for the integrals in (23); in this light, we express the zeroth-
order modified Bessel function as an infinite sum of powers
according to

I0(x) =
∞∑

k=0

(
1
k!

)2 (x

2

)2k

. (24)

Inserting (24) into (23) and taking into account the following
straightforward formula∫ ∞

0

xpe−axdx =
Γ(p + 1)

ap+1
(25)

we conclude the proof of (6).

APPENDIX B
DERIVATION OF THE PDF OF THE CONDITION NUMBER OF

W (λ1 = λ2)

The derivation presented herein represents essentially an
extension to the analysis of the previous section. To be more
precise, by combining (13) with (18) we get (26) at the top
of the next page.

Once more, the infinite series representation of a first-order
modified Bessel function of the first kind is used according to

I1(x) =
x

2

∞∑
k=0

1
k!Γ(k + 2)

(x

2

)2k

=
x

2

∞∑
k=0

1
k!2(k + 1)

(x

2

)2k

. (27)

After substituting (24) and (27) into (26) and making use of
(25), we can directly obtain (14).
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